精英家教网 > 高中数学 > 题目详情
2.已知等差数列{an}的公差不为零,a1=25,且a1,a11,a13成等比数列.
(1)求数列{an}的通项公式;
(2)求a1+a4+a7+…+a3n+13
(3)求{(30-an)•2n}的前n项和.

分析 (1)设等差数列{an}的公差为d,且d不为零,运用等比数列的中项的性质和等差数列的通项公式,解方程可得d=-2,进而得到所求数列的通项公式;
(2)运用等差数列的求和公式,注意首项为25,公差为-6,项数为n+5,计算即可得到;
(3)求得(30-an)•2n=(2n+3)•2n,运用数列的求和方法:错位相减法,结合等比数列的求和公式,化简整理,即可得到所求和.

解答 解:(1)设等差数列{an}的公差为d,且d不为零,
a1=25,且a1,a11,a13成等比数列,可得
a112=a1a13,即为(25+10d)2=25(25+12d),
即有d2=-2d,解得d=-2(0舍去),
可得an=a1+(n-1)d=25-2(n-1)=27-2n;
(2)a1+a4+a7+…+a3n+13=25+19+13+…+(27-6n-26)
=25+19+13+…+(1-6n)=$\frac{1}{2}$(25+1-6n)(n+5)=-3n2-2n+65;
(3)(30-an)•2n=(2n+3)•2n
则前n项和Tn=5•2+7•22+9•23+…+(2n+3)•2n
2Tn=5•22+7•23+9•24+…+(2n+3)•2n+1
两式相减可得,-Tn=10+2(22+23+…+2n)-(2n+3)•2n+1
=10+2•$\frac{4(1-{2}^{n-1})}{1-2}$-(2n+3)•2n+1
化简可得前n项和为(2n+1)•2n+1-2.

点评 本题考查等差数列的通项公式和求和公式的运用,同时考查等比数列的中项性质和求和公式的运用,考查数列的求和方法:错位相减法,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.过抛物线y2=2px(p>0)的焦点F作倾斜角为60°的直线l交抛物线于A,B两点,且|AF|>|BF|,则$\frac{|AF|}{|BF|}$的值为(  )
A.3B.2C.$\frac{3}{2}$D.$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若平面区域$\left\{\begin{array}{l}{0≤x≤2}\\{-2≤y≤0}\\{y≥kx+2}\end{array}\right.$是一个梯形,则实数k的取值范围是(  )
A.(-2,-1)B.(-∞,-1)C.(-2,+∞)D.(-∞,-2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知y=f(x)为偶函数,当x≥0时,f(x)=-x2+2x,则满足f(f(a))=$\frac{1}{2}$的实数a的个数为8.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若函数f(x)的定义域为R,则“函数f(x)是奇函数”是“f(0)=0”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.直线y=kx+m与椭圆有$\frac{x^2}{2}+{y^2}=1$两个不同的交点M、N
(1)若直线l过椭圆的左焦点F,且线段MN的中点P在直线x+y=0上,求直线l的方程
(2)若k=1,且以线段MN为直径的圆过点A(1,0),求实数m的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若直线bx+ay-ab=0(ab≠0)与圆x2+y2=1有公共点的充要条件是(  )
A.a2+b2≤1B.a2+b2≥1C.$\frac{1}{{a}^{2}}$+$\frac{1}{{b}^{2}}$≤1D.$\frac{1}{{a}^{2}}$+$\frac{1}{{b}^{2}}$≥1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知x∈(0,2),关于x的不等式$\frac{x}{{e}^{x}}$<$\frac{1}{k+2x-{x}^{2}}$恒成立,则实数k的取值范围为(  )
A.[0,e+1)B.[0,2e-1)C.[0,e)D.[0,e-1)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知双曲线的中心在原点,对称轴在坐标轴上,离心率为$\sqrt{2}$,且经过点P(2,1),则该双曲线的标准方程是$\frac{{x}^{2}}{3}$-$\frac{{y}^{2}}{3}$=1;渐近线方程是y=±x.

查看答案和解析>>

同步练习册答案