【题目】给出下列命题:①定义在上的函数满足,则一定不是上的减函数;
②用反证法证明命题“若实数,满足,则都为0”时,“假设命题的结论不成立”的叙述是“假设都不为0”;
③把函数的图象向右平移个单位长度,所得到的图象的函数解析式为;
④“”是“函数为奇函数”的充分不必要条件.
其中所有正确命题的序号为__________.
科目:高中数学 来源: 题型:
【题目】近几年来,我国许多地区经常出现干旱现象,为抗旱经常要进行人工降雨,现由天气预报得知,某地在未来5天的指定时间的降雨概率是:前3天均为,后2天均为,5天内任何一天的该指定时间没有降雨,则在当天实行人工降雨,否则,当天不实施人工降雨.
(1)求至少有1天需要人工降雨的概率;
(2)求不需要人工降雨的天数的分布列和期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】冬季昼夜温差大小与某反季节大豆新品种发芽多少之间有关系,某农科所对此关系进行了调查分析,他们分别记录了12月1日至12月5日的每天昼夜温差与实验室每天100颗种子中的发芽数,得到如下资料:
日期 | 12月1日 | 12月2日 | 12月3日 | 12月4日 | 12月5日 |
温差 | 10 | 11 | 13 | 12 | 8 |
发芽数 | 23 | 25 | 30 | 26 | 16 |
该农科所确定的研究方案是:先从这五组数据中选取2组,用剩下的3组数据求线性回归方程,再对被选取的2组数据进行检验.
(1)求选取的2组数据恰好是不相邻2天数据的概率;
(2)若选取的是12月1日与12月5日的两组数据,请根据12月2日至12月4日的数据,求出关于的线性回归方程;
(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(2)中所得的线性回归方程是否可靠?
(参考公式: , )
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知一家公司生产某种产品的年固定成本为6万元,每生产1千件需另投入2.9万元,设该公司一年内生产该产品千件并全部销售完,每千件的销售收入为万元,且.
(1)写出年利润(万元)关于年产量(千件)的函数解析式;
(2)求该公司生产这一产品的最大年利润及相应的年产量.(年利润=年销售收入-年总成本)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】现有4个人参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择,为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏.
(1) 求出4个人中恰有2个人去 参加甲游戏的概率;
(2)求这4个人中去参加甲游戏人数大于去参加乙游戏的人数的概率;
(3)用分别表示这4个人中去参加甲、乙游戏的人数,记,求随机变量的分布列与数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知抛物线,直线倾斜角是且过抛物线的焦点,直线被抛物线截得的线段长是16,双曲线: 的一个焦点在抛物线的准线上,则直线与轴的交点到双曲线的一条渐近线的距离是( )
A. 2 B. C. D. 1
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】若函数f(x)=loga(2x2+x)(a>0,a≠1)在区间(0, )内恒有f(x)>0,则f(x)的单调递增区间是( )
A.(﹣∞,﹣ )
B.
C.
D.(0,+∞)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com