精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆 左焦点左顶点椭圆上一点满足轴,且点轴下方, 连线与左准线交于点过点任意引一直线与椭圆交于连结交于点若实数满足: .

(1)求的值;

(2)求证:点在一定直线上.

【答案】(1)(2)见解析

【解析】试题分析:

(1)由题意结合直线AB的方程为,结合向量平行的充要条件比较系数可得

(2)设点 ,联立直线与椭圆的方程,结合韦达定理有 结合(1)的结论可得,则点在定直线.

试题解析:

1)因为,由轴,由对称轴不妨设,则直线

又左准线,所以

,所以

同理:由,得:

,所以

,比较系数得: ,所以

2)证明:设点

,得

代入椭圆方程,得:

整理得:

显然,所以

同理:由,得:

代入椭圆方程,得:

同理可得:

又由(1,所以

整理得:

即点在定直线.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= (e为自然对数的底).若函数g(x)=f(x)﹣kx恰好有两个零点,则实数k的取值范围是(
A.(1,e)
B.(e,10]
C.(1,10]
D.(10,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列结论不正确的是________(填序号).

各个面都是三角形的几何体是三棱锥;

以三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥;

棱锥的侧棱长与底面多边形的边长相等,则此棱锥可能是六棱锥;

圆锥的顶点与底面圆周上的任意一点的连线都是母线.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】空气质量按照空气质量指数大小分为七档(五级),相对应空气质量的七个类别,指数越大,说明污染的情况越严重,对人体危害越大.

指数

级别

类别

户外活动建议

可正常活动

轻微污染

易感人群症状有轻度加剧,健康人群出现刺激症状,心脏病和呼吸系统疾病患者应减少体积消耗和户外活动.

轻度污染

中度污染

心脏病和肺病患者症状显著加剧,运动耐受力降低,健康人群中普遍出现症状,老年人和心脏病、肺病患者应减少体力活动.

中度重污染

重污染

健康人运动耐受力降低,由明显强烈症状,提前出现某些疾病,老年人和病人应当留在室内,避免体力消耗,一般人群应尽量减少户外活动.

现统计邵阳市市区2016年1月至11月连续60天的空气质量指数,制成如图所示的频率分布直方图.

(1)求这60天中属轻度污染的天数;

(2)求这60天空气质量指数的平均值;

(3)将频率分布直方图中的五组从左到右依次命名为第一组,第二组,…,第五组.从第一组和第五组中的所有天数中抽出两天,记它们的空气质量指数分别为 ,求事件的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】过点作圆 的切线, 为坐标原点切点为,且.

(1)求的值;

(2)设是圆上位于第一象限内的任意一点,过点作圆的切线,且轴于点,交y轴于点,设,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,以等腰直角三角形斜边上的高为折痕,把折成互相垂直的两个平面后,有以下四个结论:

三棱锥是正三棱锥;

平面的法向量和平面的法向量互相垂直.

其中正确结论的序号是________________请把正确结论的序号都填上

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在三棱锥PABC中,PAABPABCABBCPAABBC=2,D为线段AC的中点,E为线段PC上一点.

(1)求证:PABD

(2)求证:平面BDE平面PAC

(3)PA平面BDE时,求三棱锥EBCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(1)若关于的不等式的解集是,求的值;

(2)设关于的不等式的解集是,集合,若,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy中,曲线 ,曲线C2的参数方程为: ,(θ为参数),以O为极点,x轴的正半轴为极轴的极坐标系.
(1)求C1 , C2的极坐标方程;
(2)射线 与C1的异于原点的交点为A,与C2的交点为B,求|AB|.

查看答案和解析>>

同步练习册答案