精英家教网 > 高中数学 > 题目详情

【题目】下列结论不正确的是________(填序号).

各个面都是三角形的几何体是三棱锥;

以三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥;

棱锥的侧棱长与底面多边形的边长相等,则此棱锥可能是六棱锥;

圆锥的顶点与底面圆周上的任意一点的连线都是母线.

【答案】①②③

【解析】错误,如图所示,由两个结构相同的三棱锥叠放在一起构成的几何体,各面都是三角形,但它不是棱锥.

错误,如图,若△ABC不是直角三角形或是直角三角形,但旋转轴不是直角边所在直线,所得的几何体不是圆锥.

错误,若六棱锥的所有棱长都相等,则底面多边形是正六边形,由几何图形知,若以正六边形为底面,侧棱长必然要大于底面边长.

正确,符合圆锥曲线母线的定义,故错误的是①②③.

考点: 旋转体的结构特征.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知是定义在上的奇函数,且为偶函数,对于函数有下列几种描述:

是周期函数; 是它的一条对称轴;

是它图象的一个对称中心; 时,它一定取最大值;

其中描述正确的是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知由实数组成的等比数列{an}的前项和为Sn , 且满足8a4=a7 , S7=254.
(1)求数列{an}的通项公式;
(2)对n∈N* , bn= ,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】定义:对于实数和两定点,在某图形上恰有个不同的点,使得,称该图形满足“度契合”.若边长为4的正方形中,,且该正方形满足“4度契合”,则实数的取值范围是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知等差数列满足 .

(1)求的通项公式;

(2)各项均为正数的等比数列中, ,求的前项和.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知数列满足,数列项和为.

(1)若数列是首项为正数,公比为的等比数列.

①求证:数列为等比数列;

②若对任意恒成立,求的值;

(2)已知为递增数列,即.若对任意,数列中都存在一项使得,求证:数列为等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某投资人打算投资甲乙两个项目根据预测乙项目可能的最大盈利率分别为100%50%,可能的最大亏损率分别为30%10%,投资人计划投资金额不超过10万元要求确保可能的资金亏损不超过1.8万元问投资人对甲乙两个项目各投资多少万元才能使可能的盈利最大

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆 左焦点左顶点椭圆上一点满足轴,且点轴下方, 连线与左准线交于点过点任意引一直线与椭圆交于连结交于点若实数满足: .

(1)求的值;

(2)求证:点在一定直线上.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某几何体的三视图如图所示,且该几何体的体积是3,则正视图的的值__________

【答案】3

【解析】 由已知中的三视图可得该几何体是一个以直角梯形为底面,梯形上下边长为,高为

如图所示, 平面

所以底面积为

几何体的高为,所以其体积为

点睛:在由三视图还原为空间几何体的实际形状时,要从三个视图综合考虑,根据三视图的规则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线在三视图中为虚线在还原空间几何体实际形状时,一般是以正视图和俯视图为主,结合侧视图进行综合考虑求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解

型】填空
束】
16

【题目】已知椭圆 的右焦点为 为直线上一点,线段于点,若,则__________

查看答案和解析>>

同步练习册答案