【题目】下列结论不正确的是________(填序号).
①各个面都是三角形的几何体是三棱锥;
②以三角形的一条边所在直线为旋转轴,其余两边旋转形成的曲面所围成的几何体叫圆锥;
③棱锥的侧棱长与底面多边形的边长相等,则此棱锥可能是六棱锥;
④圆锥的顶点与底面圆周上的任意一点的连线都是母线.
科目:高中数学 来源: 题型:
【题目】已知是定义在上的奇函数,且为偶函数,对于函数有下列几种描述:
①是周期函数; ②是它的一条对称轴;
③是它图象的一个对称中心; ④当时,它一定取最大值;
其中描述正确的是__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知由实数组成的等比数列{an}的前项和为Sn , 且满足8a4=a7 , S7=254.
(1)求数列{an}的通项公式;
(2)对n∈N* , bn= ,求数列{bn}的前n项和Tn .
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】定义:对于实数和两定点,在某图形上恰有个不同的点,使得,称该图形满足“度契合”.若边长为4的正方形中,,且该正方形满足“4度契合”,则实数的取值范围是__________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列,满足,数列前项和为.
(1)若数列是首项为正数,公比为的等比数列.
①求证:数列为等比数列;
②若对任意恒成立,求的值;
(2)已知为递增数列,即.若对任意,数列中都存在一项使得,求证:数列为等差数列.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某投资人打算投资甲、乙两个项目,根据预测,甲、乙项目可能的最大盈利率分别为100%和50%,可能的最大亏损率分别为30%和10%,投资人计划投资金额不超过10万元,要求确保可能的资金亏损不超过1.8万元,问投资人对甲、乙两个项目各投资多少万元,才能使可能的盈利最大?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆: 左焦点,左顶点,椭圆上一点满足轴,且点在轴下方, 连线与左准线交于点,过点任意引一直线与椭圆交于,连结交于点,若实数满足: , .
(1)求的值;
(2)求证:点在一定直线上.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某几何体的三视图如图所示,且该几何体的体积是3,则正视图的的值__________.
【答案】3
【解析】 由已知中的三视图可得该几何体是一个以直角梯形为底面,梯形上下边长为和,高为,
如图所示, 平面,
所以底面积为,
几何体的高为,所以其体积为.
点睛:在由三视图还原为空间几何体的实际形状时,要从三个视图综合考虑,根据三视图的规则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线在三视图中为虚线.在还原空间几何体实际形状时,一般是以正视图和俯视图为主,结合侧视图进行综合考虑.求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解.
【题型】填空题
【结束】
16
【题目】已知椭圆: 的右焦点为, 为直线上一点,线段交于点,若,则__________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com