精英家教网 > 高中数学 > 题目详情
7.设定义在R上的函数f(x)满足:
f(tanx)=$\frac{1}{cos2x}$,则f(${\frac{1}{2016}}$)+f(${\frac{1}{2015}}$)+…+f(${\frac{1}{2}}$)+f(0)+f(2)+…+f(2015)+f(2016)=1.

分析 由已知中f(tanx)=$\frac{1}{cos2x}$,根据万能公式,可得f(x)的解析式,进而可得f(x)+f(  $\frac{1}{x}$)=0,进而可得答案.

解答 解:∵f(tanx)=$\frac{1}{cos2x}$=$\frac{1+ta{n}^{2}x}{1-ta{n}^{2}x}$,
∴f(x)=$\frac{1+{x}^{2}}{1-{x}^{2}}$,f($\frac{1}{x}$)=$\frac{1+(\frac{1}{x})^{2}}{1-(\frac{1}{x})^{2}}$=$\frac{1+{x}^{2}}{{x}^{2}-1}$=-$\frac{1+{x}^{2}}{1-{x}^{2}}$,
∴f(x)+f($\frac{1}{x}$)=0
∴f(${\frac{1}{2016}}$)+f(${\frac{1}{2015}}$)+…+f(${\frac{1}{2}}$)+f(0)+f(2)+…+f(2015)+f(2016)=f(0)=1.
故答案为:1.

点评 本题考查的知识点是三角函数的恒等变换及化简求值,其中根据已知求出f(x)的解析式,以及f(x)+f( $\frac{1}{x}$)=0是解答的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.“-1<m<1”是“圆(x-1)2+(y-m)2=5被x轴截得的弦长大于2”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.若函数f(x)的导函数f′(x)的图象如图所示.则(  )
A.x=1是最小值点B.x=0是极小值点
C.x=2是极小值点D.函数f(x)在(1,2)上单调递增

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.定义集合A={x|2x≥1}},B={x|${{{log}_{\frac{1}{2}}}$x<0},则A∩∁RB=(  )
A.(1,+∞)B.[0,1]C.[0,1)D.[0,2)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在一个二面角的两个面内都和二面角的棱垂直的两个向量分别为(0,-1,3),(2,2,4),则这个二面角的余弦值为(  )
A.$\frac{\sqrt{15}}{6}$B.-$\frac{\sqrt{15}}{6}$C.$\frac{\sqrt{15}}{3}$D.以上都不对

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.设公差不为零的等差数列{an}的前n项和为Sn,若S3=12,a1,a2,a6成等比数列.
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=$\frac{6n-1}{{{{({3n+1})}^2}•a_n^2}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某工艺厂有铜丝5万米,铁丝9万米,准备用这两种材料编制成花篮和花盆出售.已知编制一只花篮需要铜丝200米,铁丝300米;编制一只花盆需要铜丝100米,铁丝300米.设该厂用所有原料编制x个花篮,y个花盆.
(1)列出x、y满足的关系式,并画出相应的平面区域;
(2)若出售一个花篮可获利300元,出售一个花盆可获利200元,那么怎样安排花篮和花盆的编制个数,可使所得利润最大,最大利润是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(-2,-4),|$\overrightarrow{c}$|=$\sqrt{10}$,且$\overrightarrow{b}$•$\overrightarrow{c}$=$5\sqrt{2}$,则$\overrightarrow{a}$与$\overrightarrow{c}$的夹角为(  )
A.$\frac{2π}{3}$B.$\frac{π}{3}$C.$\frac{π}{4}$D.$\frac{π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.任选一个不超过100的正整数恰为3的倍数的概率是$\frac{33}{100}$.

查看答案和解析>>

同步练习册答案