| A. | $\frac{2π}{3}$ | B. | $\frac{π}{3}$ | C. | $\frac{π}{4}$ | D. | $\frac{π}{6}$ |
分析 由坐标的关系可知$\overrightarrow{b}=-2\overrightarrow{a}$.从而求出$\overrightarrow{a}•\overrightarrow{c}$,代入向量的夹角公式计算cos<$\overrightarrow{a},\overrightarrow{c}$>.
解答 解:∵$\overrightarrow{a}$=(1,2),$\overrightarrow{b}$=(-2,-4),∴$\overrightarrow{b}=-2\overrightarrow{a}$.
∴$\overrightarrow{b}$•$\overrightarrow{c}$=-2$\overrightarrow{a}•\overrightarrow{c}$=$5\sqrt{2}$,∴$\overrightarrow{a}•\overrightarrow{c}$=-$\frac{5\sqrt{2}}{2}$.
∴cos<$\overrightarrow{a},\overrightarrow{c}$>=$\frac{\overrightarrow{a}•\overrightarrow{c}}{|\overrightarrow{a}||\overrightarrow{c}|}$=-$\frac{1}{2}$.
∴<$\overrightarrow{a},\overrightarrow{c}$>=$\frac{2π}{3}$.
故选:A.
点评 本题考查了平面向量的数量积运算,坐标运算,属于基础题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 恒小于0 | B. | 恒大于0 | C. | 可能为0 | D. | 可正可负 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com