分析 根据正弦定理以及两角和与差的正弦公式,同角的三角函数的关系,化简即可.
解答 解:∵atanA+btanB=(a+b)tan$\frac{A+B}{2}$,
∴a(tanA-tan$\frac{A+B}{2}$)=b(tan$\frac{A+B}{2}$-tanB)
∴a($\frac{sinA}{cosA}$-$\frac{sin\frac{A+B}{2}}{cos\frac{A+B}{2}}$)=b($\frac{sin\frac{A+B}{2}}{cos\frac{A+B}{2}}$-$\frac{sinB}{cosB}$),
∴a•$\frac{sin(A-\frac{A+B}{2})}{cos\frac{A+B}{2}cosA}$=b•$\frac{sin(\frac{A+B}{2}-B)}{cos\frac{A+B}{2}cosB}$,
∴a•$\frac{sin\frac{A-B}{2}}{cosA}$=b•$\frac{sin\frac{A-B}{2}}{cosB}$,
∴tanA=tanB,
∴A=B
故三角形为等腰三角形.
点评 本题考查了正弦定理以及两角和与差的正弦公式,同角的三角函数的关系,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | x=1是最小值点 | B. | x=0是极小值点 | ||
| C. | x=2是极小值点 | D. | 函数f(x)在(1,2)上单调递增 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{2π}{3}$ | B. | $\frac{π}{3}$ | C. | $\frac{π}{4}$ | D. | $\frac{π}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | y=sin$\frac{x}{2}$ | B. | y=cos2x | C. | y=sin(2x+$\frac{π}{4}$) | D. | y=tan(x-$\frac{π}{4}$) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com