精英家教网 > 高中数学 > 题目详情
3.已知tanα=-4,求下列各式的值:
(1)sin2α;
(2)3sinαcosα;
(2)cos2α-sin2α;
(4)$\frac{4sinα-2cosα}{3sinα+5cosα}$.

分析 利用同角的三角函数基本关系式,把正弦、余弦化为正切函数,计算即可.

解答 解:(1)sin2α=$\frac{{sin}^{2}α}{{sin}^{2}α{+cos}^{2}α}$=$\frac{{tan}^{2}α}{{tan}^{2}α+1}$=$\frac{{(-4)}^{2}}{{(-4)}^{2}+1}$=$\frac{16}{17}$;
(2)3sinαcosα=$\frac{3sinαcosα}{{sin}^{2}α{+cos}^{2}α}$=$\frac{3tanα}{{tan}^{2}α+1}$=$\frac{3×(-4)}{{(-4)}^{2}+1}$=-$\frac{12}{17}$;
(3)cos2α-sin2α=$\frac{{cos}^{2}α{-sin}^{2}α}{{sin}^{2}α{+cos}^{2}α}$=$\frac{1{-tan}^{2}α}{{tan}^{2}α+1}$=$\frac{1{-(-4)}^{2}}{{(-4)}^{2}+1}$=-$\frac{15}{17}$;
(4)$\frac{4sinα-2cosα}{3sinα+5cosα}$=$\frac{4tanα-2}{3tanα+5}$=$\frac{4×(-4)-2}{3×(-4)+5}$=$\frac{18}{7}$.

点评 本题考查了同角的三角函数基本关系式以及正弦、余弦化为正切函数的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知函数f(x)=$\left\{\begin{array}{l}{sinx+2cos2x,x≥0}\\{-{e}^{2x},x<0}\\{\;}\end{array}\right.$,则f(f($\frac{π}{2}$))等于(  )
A.-$\frac{1}{{e}^{2}}$B.$\frac{1}{{e}^{2}}$C.-e2D.e2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图,三棱柱ABC-A1B1C1中,D,M分别为CC1,A1B的中点,A1D⊥CC1,△AA1B是边长为2的正三角形,A1D=2,BC=1.
(1)证明:MD∥平面ABC;
(2)证明:BC⊥平面ABB1A1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知:函数g(x)=x2-2x+1.设函数f(x)=$\frac{g(x)}{x}$
(1)若不等式f(2x)-k•2x≥0在x∈[-1,1]时恒成立,求实数k的取值范围;
(2)如果关于x的方程f(|2x-1|)+t•($\frac{4}{|{2}^{x}-1|}$-3)=0有三个相异的实数根,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.3${\;}^{lo{g}_{3}5}$+(2005)0-($\frac{1}{4}$)${\;}^{-\frac{1}{2}}$+sin$\frac{7π}{6}$=$\frac{7}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.在△ABC中,已知atanA+btanB=(a+b)tan$\frac{A+B}{2}$,试判断此三角形的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在2014年初上海市人才招聘会上,有A、B两家公司分别开出它们招聘的工资标准:
A公司允诺:第一年月工资3000元,以后每年比上一年月工资增加500元;
B公司允诺:第一年月工资3500元,以后每年比上一年月工资增加8%;
小李选择了A公司,小张选择了B公司,试问:
(1)若小李和小张分别在A、B两公司连续工作6年,第6年,小李和小张谁的月工资高?
(2)若小李和小张分别在A、B两公司连续工作10年,这10年小李和小张的总收入谁高?((1.08)10≈2.16)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.二项式(1-2x)5展开式中系数最大项是80x4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.根据二分法原理求解方程x2-4=0得到的框图可称为(  )
A.知识结构图B.组织结构图C.工序流程图D.程序流程图

查看答案和解析>>

同步练习册答案