精英家教网 > 高中数学 > 题目详情
8.用五种不同的颜色对图中的A,B,C,D,E五个区域进行着色,相邻区域不能涂相同的颜色,则共有780种不同的着色方案.(用数字作答)

分析 由于规定一个区域只涂一种颜色,相邻的区域颜色不同,可分步进行,区域A有5种涂法,B有4种涂法,C有3种,再对BD进行分类,若BD相同,若BD不同,根据乘法原理可得结论.

解答 解:先涂A,则A有5种涂法,再涂B,因为B与A相邻,所以B的颜色只要与A不同即可,有4种涂法,同理C有3种涂法,
若B与D相同,则E有4种,
若B与D不相同,则D有3种,E有3种,
故有5×4×3×(4+3×3)=780种
故答案为:780

点评 本题以实际问题为载体,考查计数原理的运用,关键搞清是分类,还是分步.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.设点A(1,-2),B(3,m),C(-1,4),若$\overrightarrow{AC}$•$\overrightarrow{CB}$=4,则实数m的值为(  )
A.6B.-5C.4D.-3

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知数列{an}的前n项和Sn=2n+1,(n∈N*).
(1)求数列{an}的通项an
(2)设bn=n•an+1,求数列{bn}的前n项和Tn
(3)设cn=$\frac{1}{2{a}_{n}-1}$,求证:c1+c2+…+cn<$\frac{6}{5}$.(n∈N*

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.某商店举行三周年店庆活动,每位会员交会员费50元,可享受20元的消费,并参加一次抽奖活动,从一个装有标号分别为1,2,3,4,5,6的6只均匀小球的抽奖箱中,有放回的抽两次球,抽得的两球标号之和为12,则获一等奖价值a元的礼品,标号之和为11或10,获二等奖价值100元的礼品,标号之和小于10不得奖.
(1)求各会员获奖的概率;
(2)设商店抽奖环节收益为ξ元,求ξ的分布列;假如商店打算不赔钱,a最多可设为多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.如图,在正方体ABCD-A1B1C1D1中,二面角D1-AB-D的 大小是(  )
A.$\frac{π}{4}$B.$\frac{π}{3}$C.$\frac{π}{6}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)过点M(1,$\frac{3}{2}$),且左焦点为F1(-1,0).
(1)求椭圆C的方程;
(2)设椭圆C的左右顶点分别为A,B,P为椭圆C上一动点,直线PA,PB分别交直线x=a2于点D,E.
试探究D,E两点纵坐标的乘积是否为定值?若是定值,求出该定值;若不是,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设变量x,y满足约束条件:$\left\{\begin{array}{l}{y≥x}\\{x+3y≤4}\\{x≥-2}\end{array}\right.$,z=x+2y的最大值为(  )
A.3B.4C.-6D.-5

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若向量$\overrightarrow{a}$、$\overrightarrow{b}$满足$\overrightarrow{a}$+$\overrightarrow{b}$=(2,-1),$\overrightarrow{a}$=(1,2),则$\overrightarrow{a}$•$\overrightarrow{b}$=-5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.某校对高一年级学生寒假参加社区服务的次数进行了统计,随机抽取了M名学生作为样本,得到这M名学生参加社区服务的次数,根据此数据作出了频率分布统计表和频率分布直方图如图:
分组频数频率
[10,15)200.25
[15,20)50n
[20,25)mp
[25,30)40.05
合计MN
(Ⅰ)求表中n,p的值和频率分布直方图中a的值,并根据频率分布直方图估计该校高一学生寒假参加社区服务次数的中位数;
(Ⅱ)如果用分层抽样的方法从样本服务次数在[10,15)和[25,30)的人中共抽取6人,再从这6人中选2人,求2人服务次数都在[10,15)的概率.

查看答案和解析>>

同步练习册答案