2£®ÔÚ¼«×ø±êϵÖУ¬ÇúÏßC1µÄ¼«×ø±ê·½³ÌÊǦÑ=$\frac{24}{4cos¦È+3sin¦È}$£¬ÒÔ¼«µãΪԭµãO£¬¼«ÖáΪxÖáÕý°ëÖᣨÁ½×ø±êϵȡÏàͬµÄµ¥Î»³¤¶È£©µÄÖ±½Ç×ø±êϵxOyÖУ¬ÇúÏßC2µÄ²ÎÊý·½³ÌΪ£º$\left\{\begin{array}{l}{x=cos¦È}\\{y=sin¦È}\end{array}\right.$£¨¦ÈΪ²ÎÊý£©£®
£¨1£©ÇóÇúÏßC1µÄÖ±½Ç×ø±ê·½³ÌÓëÇúÏßC2µÄÆÕͨ·½³Ì£»
£¨2£©ÈôÓã¨$\frac{x}{2\sqrt{2}}£¬\frac{y}{2}$£©´ú»»ÇúÏßC2µÄÆÕͨ·½³ÌÖеģ¨x£¬y£©µÃµ½ÇúÏßC3µÄ·½³Ì£¬ÈôM£¬N·Ö±ðÊÇÇúÏßC1ºÍÇúÏßC3Éϵ͝µã£¬Çó|MN|µÄ×îСֵ£®

·ÖÎö £¨1£©¸ù¾Ýx=¦Ñcos¦È£¬y=¦Ñsin¦ÈÇó³öC1£¬C2µÄÖ±½Ç×ø±ê·½³Ì¼´¿É£»£¨2£©Çó³öC3µÄ²ÎÊý·½³Ì£¬¸ù¾Ýµãµ½Ö±ÏߵľàÀ빫ʽ¼ÆËã¼´¿É£®

½â´ð ½â£º£¨1£©¡ßC1µÄ¼«×ø±ê·½³ÌÊǦÑ=$\frac{24}{4cos¦È+3sin¦È}$£¬
¡à4¦Ñcos¦È+3¦Ñsin¦È=11£¬ÕûÀíµÃ£º4x+3y-24=0£¬
¡àC1µÄÖ±½Ç×ø±ê·½³ÌÊÇ£º4x+3y-24=0£»
ÇúÏßC2£º$\left\{\begin{array}{l}{x=cos¦È}\\{y=sin¦È}\end{array}\right.$£¬¡àx2+y2=1£¬
¹ÊC2µÄÆÕͨ·½³ÌÊÇ£ºx2+y2=1£»
£¨2£©Óã¨$\frac{x}{2\sqrt{2}}£¬\frac{y}{2}$£©´ú»»ÇúÏßC2µÄÆÕͨ·½³ÌÖеģ¨x£¬y£©£¬
µÃµ½ÇúÏßC3µÄ·½³ÌΪ£º$\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{4}$=1£¬
ÔòÇúÏßC3µÄ²ÎÊý·½³ÌÊÇ£º$\left\{\begin{array}{l}{x=2\sqrt{2}cos¦Á}\\{y=2sin¦Á}\end{array}\right.$£¬
ÉèN£¨2$\sqrt{2}$cos¦Á£¬2sin¦Á£©£¬ÔòµãNµ½ÇúÏßC1µÄ¾àÀëÊÇ£º
d=$\frac{|4¡Á2\sqrt{2}cos¦Á+3¡Á2sin¦Á-24|}{5}$
=$\frac{|2\sqrt{41}sin£¨¦Á+¦È£©-24|}{5}$
=$\frac{24-2\sqrt{41}sin£¨¦Á+¦È£©}{5}$£¬
µ±sin£¨¦Á+¦È£©=1ʱ£¬dÓÐ×îСֵ$\frac{24-2\sqrt{41}}{5}$£¬
¹Ê|MN|µÄ×îСֵÊÇ$\frac{24-2\sqrt{41}}{5}$£®

µãÆÀ ±¾Ì⿼²éÁ˼«×ø±ê·½³ÌÒÔ¼°²ÎÊý·½³Ì¡¢ÆÕͨ·½³ÌµÄת»¯£¬¿¼²éµãµ½Ö±ÏߵľàÀ룬ÊÇÒ»µÀÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

12£®ÔÚ¡÷ABC£¬BC=3£¬AB=$\sqrt{6}£¬¡ÏC=\frac{¦Ð}{4}$£¬Ôò¡ÏA=$\frac{¦Ð}{3}»ò\frac{2¦Ð}{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

13£®ÒÑÖªiÊÇÐéÊýµ¥Î»£¬Èô¸´Êýz=$\frac{m+i}{1+2i}$£¨m¡ÊR£©ÊÇ´¿ÐéÊý£¬Ôòm=-2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

10£®ÒÑÖªÊýÁÐ{an}µÄ¸÷Ïî¾ùΪÕýÊý£¬a1=1£¬Ç°nÏîºÍΪSn£¬ÇÒan+12-n¦Ë2-1=2¦ËSn£¬¦ËΪÕý³£Êý£®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©¼Çbn=$\frac{{S}_{n}}{{a}_{n}}$£¬Cn=$\frac{1}{{S}_{n}}$+$\frac{1}{{S}_{k-n}}$£¨k£¬n¡ÊN*£¬k¡Ý2n+2£©£®
       ÇóÖ¤£º¢Ùbn£¼bn+1£»
                 ¢ÚCn£¾Cn+1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

17£®Èôº¯Êýf£¨x£©=$\left\{\begin{array}{l}£¨a-2£©x£¬x¡Ý1\\{£¨\frac{1}{2}£©^x}-1£¬x£¼1\end{array}$ÊÇRÉϵĵ¥µ÷µÝ¼õº¯Êý£¬ÔòʵÊýaµÄȡֵ·¶Î§ÊÇa¡Ü$\frac{3}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®ÉèA£¬B·Ö±ðÊÇË«ÇúÏßC£º$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1£¨{a£¾0£¬b£¾0}£©$µÄ×ó¡¢ÓÒ¶¥µã£¬PÊÇË«ÇúÏßCÉÏÒìÓÚA£¬BµÄÈÎÒ»µã£¬ÉèÖ±ÏßAP£¬BPµÄбÂÊ·Ö±ðΪm£¬n£¬Ôò$\frac{2a}{b}$+ln|m|+ln|n|È¡µÃ×îСֵʱ£¬Ë«ÇúÏßCµÄÀëÐÄÂÊΪ£¨¡¡¡¡£©
A£®2B£®$\sqrt{3}$C£®$\sqrt{2}$D£®$\sqrt{6}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

14£®ÒÑ֪˫ÇúÏßC£º$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1£¨{a£¾0£¬b£¾0}£©$µÄ×ó¡¢ÓÒ½¹µã·Ö±ðΪF1£¬F2£¬Á½Ìõ½¥½üÏß·Ö±ðΪl1£¬l2£¬¹ýF1×÷F1A¡Íl1ÓÚµãA£¬¹ýF2×÷F2B¡Íl2ÓÚµãB£¬OΪԭµã£¬Èô¡÷ABOÊDZ߳¤Îª$\sqrt{3}$µÄµÈ±ßÈý½ÇÐΣ¬ÔòË«ÇúÏߵķ½³ÌΪ£¨¡¡¡¡£©
A£®$\frac{x^2}{21}-\frac{y^2}{9}=1$B£®$\frac{x^2}{9}-\frac{y^2}{21}=1$C£®$\frac{x^2}{3}-\frac{y^2}{9}=1$D£®$\frac{x^2}{9}-\frac{y^2}{3}=1$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®ÒÑÖª¦ÁÊǵÚÈýÏóÏ޽ǣ¬Ôò$\frac{¦Á}{2}$ÊÇ£¨¡¡¡¡£©
A£®µÚÒ»ÏóÏÞ½ÇB£®µÚ¶þÏóÏÞ½Ç
C£®µÚÒ»»òµÚËÄÏóÏÞ½ÇD£®µÚ¶þ»òµÚËÄÏóÏÞ½Ç

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÔÚÈçͼËùʾµÄÆ½ÃæÖ±½Ç×ø±êϵÖУ¬ÒÑÖªµãA£¨1£¬0£©ºÍµãB£¨-1£¬0£©£¬|$\overrightarrow{OC}$|=1£¬ÇÒ¡ÏAOC=x£¬ÆäÖÐOÎª×ø±êÔ­µã£®
£¨1£©Èôx=$\frac{3¦Ð}{4}$£¬ÉèµãDΪÏß¶ÎOAÉϵ͝µã£¬Çó|$\overrightarrow{OC}$+$\overrightarrow{OD}$|µÄ×îСֵ£»
£¨2£©Èôx¡Ê£¨0£¬$\frac{¦Ð}{2}$£©£¬ÏòÁ¿$\overrightarrow m=\overrightarrow{BC}$£¬$\overrightarrow n=£¨1-cosx£¬sinx-2cosx£©$£¬Çó$\overrightarrow m•\overrightarrow n$µÄ×îСֵ¼°¶ÔÓ¦µÄxÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸