精英家教网 > 高中数学 > 题目详情
2.椭圆$\frac{{x}^{2}}{4}$+y2=1的焦点为F1、F2,点P在椭圆上,如果线段PF1的中点在y轴上,那么|PF1|是|PF2|的(  )
A.3倍B.4倍C.5倍D.7倍

分析 椭圆$\frac{{x}^{2}}{4}$+y2=1,a=2,b=1,|PF1|+|PF2=4.由线段PF1的中点E在y轴上,O为F1F2的中点,可得PF2∥OE.求出|PF2|=$\frac{{b}^{2}}{a}$=$\frac{1}{2}$,可得|PF1|.

解答 解:∵椭圆$\frac{{x}^{2}}{4}$+y2=1,∴a=2,b=1,|PF1|+|PF2=4.
∵线段PF1的中点E在y轴上,O为F1F2的中点,
∴PF2∥OE.
∴|PF2|=$\frac{{b}^{2}}{a}$=$\frac{1}{2}$,|PF1|=4-$\frac{1}{2}$=$\frac{7}{2}$.
∴|PF1|=7|PF2|,
故选:D.

点评 本题考查了椭圆的标准方程及其性质、直线与椭圆相交弦长问题、三角形中位线定理,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.若△ABC中,a+b=4,∠C=30°,则△ABC面积的最大值是1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知数列{an}中,a1=2,当n≥2时,an=2an-1+(n-1)•2n,设bn=$\frac{{a}_{n}}{{2}^{n}}$-1,则$\frac{1}{{b}_{2}}$+$\frac{1}{{b}_{3}}$+…+$\frac{1}{{b}_{n}}$=$\frac{2n-2}{n}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.一次函数f(x)=kx+b过点(-3,2)和(2,7),
(1)求f(x)的解析式;
(2)试求不等式f(x)>3的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.解下列方程:
(1)2x=$\sqrt{2}$;       
(2)log2(3x)=log2(2x+1);        
(3)2×5x+1-3=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知抛物线C:x2=2py(p>0)的焦点为F,直线x=4与x轴的交点为P,与C的交点为Q,且$|{QF}|=\frac{5}{4}|{PQ}|$,则抛物线C的方程为(  )
A.x2=2yB.x2=4yC.x2=8yD.x2=16y

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知命题p:$\frac{a-2}{a}$>2,命题q:?x∈[1,2],x2-ax+1>0.若p∧q与?q同时为假命题,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知a→=(-2,1),b→=(k,-3),c→=(1,2),若(a→-2b→)⊥c→,则|b→|=(  )
A.10B.35C.32D.25

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知Sn为数列{an}的前n项和,a1=2,2Sn=(n+1)an,若存在唯一的正整数n使得不等式an2-tan-2t2≤0成立,则实数t的取值范围为(-4,-2]∪[1,2).

查看答案和解析>>

同步练习册答案