精英家教网 > 高中数学 > 题目详情
10.一次函数f(x)=kx+b过点(-3,2)和(2,7),
(1)求f(x)的解析式;
(2)试求不等式f(x)>3的解集.

分析 (1)将坐标带入求解k,b的值可得解析式.
(2)根据不等式的解法求解f(x)>3即可.

解答 解:(1)一次函数f(x)=kx+b过点(-3,2)和(2,7),
∴$\left\{\begin{array}{l}{-3k+b=2}\\{2k+b=7}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{k=1}\\{b=5}\end{array}\right.$,
∴f(x)的解析式为f(x)=x+5.
(2)不等式f(x)>3,即x+5>3,
解得:x>-2.
故得不等式f(x)>3的解集为(-2,+∞).

点评 本题考查了函数解析式的求法,带值计算和简单不等式的求解,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.已知函数$f(x)=\left\{\begin{array}{l}{log_2}({-x}),x<0\\ x-2,x≥0\end{array}\right.$,若函数g(x)=|f(x)|-a有四个不同零点x1,x2,x3,x4,且x1<x2<x3<x4,则${x_1}{x_2}{a^2}-\frac{{{x_3}+{x_4}}}{2}a+2017$的最小值为2016.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.奇函数f(x)在区间[3,6]上是增函数,在区间[3,6]上的最大值为8,最小值为-1,则f(6)+f(-3)的值为(  )
A.10B.-10C.9D.15

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.多面体ABCDEF(如图甲)的俯视图如图乙,己知面ADE为正三角形.
(1)求多面体ABCDEF的体积;
(2)求二面角A-BF-C的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知向量$\overrightarrow{a}$=(n,1),$\overrightarrow{b}$=(4,n),向量$\overrightarrow{a}$与$\overrightarrow{b}$共线,则实数n=±2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.方程x2-2x+3=0的解集是∅.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.椭圆$\frac{{x}^{2}}{4}$+y2=1的焦点为F1、F2,点P在椭圆上,如果线段PF1的中点在y轴上,那么|PF1|是|PF2|的(  )
A.3倍B.4倍C.5倍D.7倍

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.直线l:y=kx+m与椭圆C:$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1.
(1)原点到l的距离为1,求出k和m的关系;
(2)若l与C交于A,B两点,且$\overrightarrow{OA}$•$\overrightarrow{OB}$=0,求出k和m的关系.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.如图,阴影部分是由四个全等的直角三角形组成的图形,在大正方形内随机取一点,这一点落在小正方形内的概率为 $\frac{1}{5}$,若直角三角形的两条直角边的长分别为a,b(a>b),则$\frac{b}{a}$=(  )
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{{\sqrt{3}}}{3}$D.$\frac{{\sqrt{2}}}{2}$

查看答案和解析>>

同步练习册答案