精英家教网 > 高中数学 > 题目详情
17.解下列方程:
(1)2x=$\sqrt{2}$;       
(2)log2(3x)=log2(2x+1);        
(3)2×5x+1-3=0.

分析 根指数函数和对数函数的性质,即可求出x的值.

解答 解:(1)2x=$\sqrt{2}$=${2}^{\frac{1}{2}}$,解得x=$\frac{1}{2}$;
(2)log2(3x)=log2(2x+1),则3x=2x+1,解得x=1,
(3)2×5x+1-3=0,解得x=log5$\frac{3}{2}$-1.

点评 本题考查了指数方程和对数方程,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.化简求值:
(1)${log_3}^{\sqrt{27}}+{0.064^{\frac{1}{3}}}-{({-2})^0}+{16^{\frac{3}{4}}}$;
(2)已知${2^x}=3,{8^{\frac{y}{3}}}=9$,求2x-2y

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.如图,正方体ABCD-A1B1C1D1的棱长为1,P为BC的中点,Q为线段CC1上的动点,过点A,P,Q的平面截该正方体所得的截面记为S,则下列命题正确的是①③④⑤(写出所有正确命题的编号).
①当$0<CQ<\frac{1}{2}$时,S为四边形;
②当$\frac{3}{4}<CQ<1$时,S为六边形;
③当$CQ=\frac{1}{2}$时,S为等腰梯形;
④当CQ=1时,S的面积为$\frac{{\sqrt{6}}}{2}$; 
⑤当$CQ=\frac{3}{4}$时,S与C1D1的交点R满足${C_1}R=\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知向量$\overrightarrow{a}$=(n,1),$\overrightarrow{b}$=(4,n),向量$\overrightarrow{a}$与$\overrightarrow{b}$共线,则实数n=±2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知实数x、y满足条件:$\left\{\begin{array}{l}x-y-1≤0\\ 2x+y-4≥0\\ y≤2\end{array}\right.$,则$\frac{2x^2+y^2}{xy}$的最大值与最小值的和为(  )
A.$\frac{20}{3}$B.$\frac{42}{5}$+2$\sqrt{2}$C.$\frac{136}{15}$D.$\frac{27}{5}$+2$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.椭圆$\frac{{x}^{2}}{4}$+y2=1的焦点为F1、F2,点P在椭圆上,如果线段PF1的中点在y轴上,那么|PF1|是|PF2|的(  )
A.3倍B.4倍C.5倍D.7倍

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知向量$\overrightarrow{OA}$,$\overrightarrow{OB}$满足|$\overrightarrow{OA}$|=|$\overrightarrow{OB}$|=1,$\overrightarrow{OA}$⊥$\overrightarrow{OB}$,$\overrightarrow{OC}$=λ$\overrightarrow{OA}$+μ$\overrightarrow{OB}$(λ,μ∈R),若M为线段AB的中点,并且|$\overrightarrow{MC}$|=1,则λ+μ的最大值为(  )
A.1+$\sqrt{2}$B.1-$\sqrt{2}$C.$\sqrt{2}$-1D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.二次函数f(x)满足且f(0)=0,且对任意x∈R总有f(x+1)=f(x)+x+1,求f(x)的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.在等差数列{an}中,已知a1=3,a9=11则前9项和S9=(  )
A.63B.65C.72D.62

查看答案和解析>>

同步练习册答案