精英家教网 > 高中数学 > 题目详情

设正项数列都是等差数列,且公差相等,(1)求的通项公式;(2)若的前三项,记数列数列的前n项和为

(1),
(2)由……

解析试题分析:设的公差为,则,即
是等差数列得到:
(或=   2分,)
,所以,  4分,
所以:……5分,  6分
(2)由,得到:等比数列的公比
所以:,   8分
所以  10分
……      12分
考点:本题主要考查等差中项、等比数列的的基础知识,“裂项相消法”,不等式的证明。
点评:中档题,本题综合考查等差数列、等比数列的基础知识,本解答从确定通项公式入手,明确了所研究数列的特征。“分组求和法”、“错位相消法”、“裂项相消法”是高考常常考到数列求和方法。先求和,在利用“放缩法”证明不等式,是常用方法。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知数列的前项和为,且对任意的都有 ,
(Ⅰ)求数列的前三项
(Ⅱ)猜想数列的通项公式,并用数学归纳法证明

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设数列的前项和为,且
(1)求数列的通项公式;(2)设,数列的前项和为,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在数列中,
(Ⅰ)求数列的前项和
(Ⅱ)若存在,使得成立,求实数的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

数列的前项和为,且
(1)写出的递推关系式,并求,,的值;
(2)猜想关于的表达式,并用数学归纳法证明.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

观察下列三角形数表

记第行的第m个数为 
(Ⅰ)分别写出值的大小;
(Ⅱ)归纳出的关系式,并求出关于n的函数表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数.
(1)若函数在区间上有极值,求实数的取值范围;
(2)若关于的方程有实数解,求实数的取值范围;
(3)当时,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
在数列中,成等差数列,成等比数列
(1)求
(2)猜想的通项公式,并证明你的结论.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分18分) 本题共有3个小题,第1小题满分4分,第2小题满分6分. 第3小题满分8分.
(理)对于数列,从中选取若干项,不改变它们在原来数列中的先后次序,得到的数列称为是原来数列的一个子数列. 某同学在学习了这一个概念之后,打算研究首项为正整数,公比为正整数的无穷等比数列的子数列问题. 为此,他任取了其中三项.
(1) 若成等比数列,求之间满足的等量关系;
(2) 他猜想:“在上述数列中存在一个子数列是等差数列”,为此,他研究了的大小关系,请你根据该同学的研究结果来判断上述猜想是否正确;
(3) 他又想:在首项为正整数,公差为正整数的无穷等差数列中是否存在成等比数列的子数列?请你就此问题写出一个正确命题,并加以证明.

查看答案和解析>>

同步练习册答案