精英家教网 > 高中数学 > 题目详情

观察下列三角形数表

记第行的第m个数为 
(Ⅰ)分别写出值的大小;
(Ⅱ)归纳出的关系式,并求出关于n的函数表达式.

(Ⅰ)=9,=7,=5
(Ⅱ)

解析试题分析:(Ⅰ)观察以上三角形数表可得:=9,=7,="5"
(Ⅱ)依题意  
 ,所以
所求
考点:递推公式
点评:本题是对数字变化规律的考查,比较简单,观察出第②③行的数与第①行的数的联系是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

是等差数列,公差的前项和,已知.
(1)求数列的通项公式
(2)令=,求数列的前项之和.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知数列{}满足=1,=,(1)计算的值;(2)归纳推测,并用数学归纳法证明你的推测.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知是单调递增的等差数列,首项,前项和为,数列是等比数列,首项
(1)求的通项公式.
(2)设,数列的前项和为,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设正项数列都是等差数列,且公差相等,(1)求的通项公式;(2)若的前三项,记数列数列的前n项和为

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)
已知数列的通项公式为,数列的前n项和为,且满足
(1)求的通项公式;
(2)在中是否存在使得中的项,若存在,请写出满足题意的一项(不要求写出所有的项);若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

在数列中,,且.
(Ⅰ) 求,猜想的表达式,并加以证明;
(Ⅱ) 设,求证:对任意的自然数,都有

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设数列满足:
(1)求证:
(2)若,对任意的正整数恒成立,求的取值范围。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设数列的前n项和为Sn=2n2为等比数列,且
(Ⅰ)求数列的通项公式;
(Ⅱ)设,求数列n项和Tn.

查看答案和解析>>

同步练习册答案