设数列的前项和为,且 .
(1)求数列的通项公式;(2)设,数列的前项和为,求证:.
科目:高中数学 来源: 题型:解答题
设满足以下两个条件的有穷数列为阶“期待数列”:
①;②.
(1)若等比数列为 ()阶“期待数列”,求公比;
(2)若一个等差数列既是 ()阶“期待数列”又是递增数列,求该数列的通项公式;
(3)记阶“期待数列”的前项和为:
(ⅰ)求证:;
(ⅱ)若存在使,试问数列能否为阶“期待数列”?若能,求出所有这样的数列;若不能,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
已知函数,为正整数.
(Ⅰ)求和的值;
(Ⅱ)数列的通项公式为(),求数列的前项和;
(Ⅲ)设数列满足:,,设,若(Ⅱ)中的满足:对任意不小于3的正整数n,恒成立,试求m的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
(本题满分16分)
已知有穷数列共有项(整数),首项,设该数列的前项和为,且其中常数⑴求的通项公式;⑵若,数列满足
求证:;
⑶若⑵中数列满足不等式:,求的最大值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com