精英家教网 > 高中数学 > 题目详情
18.已知:x∈(0,+∞),观察下列式子:x+$\frac{1}{x}≥2,x+\frac{4}{x^2}=\frac{x}{2}+\frac{x}{2}+\frac{4}{x^2}$≥3…类比有x+$\frac{a}{x^n}≥n+1({n∈{N^*}})$,则a的值为nn

分析 根据已知中x∈(0,+∞),观察下列式子:x+$\frac{1}{x}≥2,x+\frac{4}{x^2}=\frac{x}{2}+\frac{x}{2}+\frac{4}{x^2}$≥3…归纳可得:x+$\frac{{n}^{2}}{{x}^{n}}≥n+1(n∈{N}^{*})$,进而得到答案.

解答 解:由已知中:x∈(0,+∞)时,
x+$\frac{1}{x}≥2,x+\frac{4}{x^2}=\frac{x}{2}+\frac{x}{2}+\frac{4}{x^2}$≥3,

归纳推理得:x+$\frac{{n}^{2}}{{x}^{n}}≥n+1(n∈{N}^{*})$,
故a=nn
故答案为:nn

点评 本题考查归纳推理,解题的关键在于发现左式中的规律,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知圆C的圆心在直线y=x-2上
(Ⅰ)若圆经过A(3,-2)和B(0,-5)两点.
(i)求圆C的方程;
(ii)设圆C与y轴另一交点为P,直线l过点P且与圆C相切.设D是圆C上异于P,B的动点,直线BD与直线l交于点R.试判断以PR为直径的圆与直线CD的位置关系,并说明理由;
(Ⅱ)设点M(0,3),若圆C半径为3,且圆C上存在点N,使|MN|=2|NO|,求圆心C的横坐标的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.砷是广泛分布于自然界中的非金属元素,长期饮用高砷水会直接危害群众的身心健康和生命安全,而近水农村地区,水质情况更需要关注.为了解甲、乙两地区农村居民饮用水中砷含量的基本情况,分别在两地随机选取10个村子,其砷含量的调查数据如下(单位:mg/1000L):
甲地区的10个村子饮用水中砷的含量:
52   32   41   72   43   35   45   61   53   44
乙地区的10个村子饮用水中砷的含量:
44   56   38   61   72   57   64   71   58   62
(Ⅰ)根据两组数据完成茎叶图,试比较两个地区中哪个地区的饮用水中砷含量更高,并说明理由;
(Ⅱ)国家规定居民饮用水中砷的含量不得超过50,现医疗卫生组织决定向两个地区中每个砷超标的村子派驻一个医疗救助小组.用样本估计总体,把频率作为概率,若从乙地区随机抽取3个村子,用X表示派驻的医疗小组数,试写出X的分布列并求X的期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.如图,AB是圆O的直径,C是半径OB的中点,D是OB延长线上一点,且BD=OB,直线MD与圆O相交于点M、T(不与A、B重合),DN与圆O相切于点N,连结MC,MB,OT.
(Ⅰ)求证:DT•DM=DO•DC;
(Ⅱ)若∠DOT=30°,求∠BMC.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知$\frac{\overline z}{i}$=2-i,则在复平面内,复数z对应的点位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知命题p对任意x∈R,总有|x-1|+|x+1|>2;命题q:x>2是x>1的充分不必要条件.则下列命题为真命题的是(  )
A.p∧qB.¬p∧¬qC.¬p∧qD.p∧¬q

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)=$\left\{\begin{array}{l}{(\frac{1}{2})^{x},x≤0}\\{1-3x,x>0}\end{array}\right.$,若f(2a2-3)>f(5a),则实数a的取值范围是(-$\frac{1}{2}$,3).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知椭圆以坐标原点为中心,坐标轴为对称轴,以抛物线y2=16x的焦点为其中一个焦点,以双曲线$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1的焦点为顶点.
(1)求椭圆的标准方程;
(2)已知点A(-1,0),B(1,0),且C,D分别为椭圆的上顶点和右顶点,点M是线段CD上的动点,求$\overrightarrow{AM}$•$\overrightarrow{BM}$的最小值;
(3)若E,F是椭圆上关于原点对称的两点,P是椭圆上任意一点,则当直线PE,PF的斜率都存在,并记为kPE,kPF时,kPE•kPF是否为定值,若时求出这个定值,若不是,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=xlnx.
(Ⅰ)讨论函数f(x)的单调性;
(Ⅱ)对于任意正实数x,不等式f(x)>kx-$\frac{1}{2}$恒成立,求实数k的取值范围;
(Ⅲ)求证:当a>3时,对于任意正实数x,不等式f(a+x)<f(a)•ex恒成立.

查看答案和解析>>

同步练习册答案