分析 根据已知中x∈(0,+∞),观察下列式子:x+$\frac{1}{x}≥2,x+\frac{4}{x^2}=\frac{x}{2}+\frac{x}{2}+\frac{4}{x^2}$≥3…归纳可得:x+$\frac{{n}^{2}}{{x}^{n}}≥n+1(n∈{N}^{*})$,进而得到答案.
解答 解:由已知中:x∈(0,+∞)时,
x+$\frac{1}{x}≥2,x+\frac{4}{x^2}=\frac{x}{2}+\frac{x}{2}+\frac{4}{x^2}$≥3,
…
归纳推理得:x+$\frac{{n}^{2}}{{x}^{n}}≥n+1(n∈{N}^{*})$,
故a=nn,
故答案为:nn
点评 本题考查归纳推理,解题的关键在于发现左式中的规律,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | p∧q | B. | ¬p∧¬q | C. | ¬p∧q | D. | p∧¬q |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com