4£®ÒÑÖªÍÖÔ²ÒÔ×ø±êÔ­µãΪÖÐÐÄ£¬×ø±êÖáΪ¶Ô³ÆÖᣬÒÔÅ×ÎïÏßy2=16xµÄ½¹µãΪÆäÖÐÒ»¸ö½¹µã£¬ÒÔË«ÇúÏß$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1µÄ½¹µãΪ¶¥µã£®
£¨1£©ÇóÍÖÔ²µÄ±ê×¼·½³Ì£»
£¨2£©ÒÑÖªµãA£¨-1£¬0£©£¬B£¨1£¬0£©£¬ÇÒC£¬D·Ö±ðΪÍÖÔ²µÄÉ϶¥µãºÍÓÒ¶¥µã£¬µãMÊÇÏß¶ÎCDÉϵ͝µã£¬Çó$\overrightarrow{AM}$•$\overrightarrow{BM}$µÄ×îСֵ£»
£¨3£©ÈôE£¬FÊÇÍÖÔ²ÉϹØÓÚÔ­µã¶Ô³ÆµÄÁ½µã£¬PÊÇÍÖÔ²ÉÏÈÎÒâÒ»µã£¬Ôòµ±Ö±ÏßPE£¬PFµÄбÂʶ¼´æÔÚ£¬²¢¼ÇΪkPE£¬kPFʱ£¬kPE•kPFÊÇ·ñΪ¶¨Öµ£¬ÈôʱÇó³öÕâ¸ö¶¨Öµ£¬Èô²»ÊÇ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©Í¨¹ýÅ×ÎïÏß¡¢Ë«ÇúÏß·½³Ì£¬ÀûÓø÷×Ե͍Ò弯Ëã¼´¿É£»
£¨2£©Í¨¹ýÉèM£¨x0£¬y0£©£¬¿ÉÖªÖ±ÏßCDµÄ·½³Ì£¬ÀûÓöþ´Îº¯ÊýµÄÐÔÖʼ´µÃ$\overrightarrow{AM}$•$\overrightarrow{BM}$µÄ×îСֵ£»
£¨3£©Í¨¹ýÉèµãE£¨m£¬n£©¿ÉµÃF£¨-m£¬-n£©£¬ÉèP£¨x£¬y£©£¬ÀûÓÃбÂʵĹ«Ê½¼ÆËã¼´¿É£®

½â´ð ½â£º£¨1£©Å×ÎïÏßy2=16xµÄ½¹µã£¨4£¬0£©£¬
Ë«ÇúÏß$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{9}$=1µÄ½¹µã£¨¡À5£¬0£©£¬
ÉèÍÖÔ²µÄ±ê×¼·½³ÌΪ$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©£¬
¡àa=5£¬c=4£¬¡àb2=25-16=9£¬
¡àÍÖÔ²µÄ±ê×¼·½³ÌΪ£º$\frac{{x}^{2}}{25}+\frac{{y}^{2}}{9}=1$£»
£¨2£©ÉèM£¨x0£¬y0£©£¬ÓÉÌâÒâÖªÖ±ÏßCDµÄ·½³ÌΪ$\frac{x}{5}+\frac{y}{3}=1$£¬
¼´y=-$\frac{3}{5}$x+3£¨0¡Üx¡Ü5£©£¬
Ôòy0=-$\frac{3}{5}$x0+3£¨0¡Üx0¡Ü5£©£¬$\overrightarrow{AM}$=£¨x0+1£¬y0£©£¬$\overrightarrow{BM}$=£¨x0-1£¬y0£©£¬
¡à$\overrightarrow{AM}$•$\overrightarrow{BM}$=x02+y02-1
=x02+£¨-$\frac{3}{5}$x0+3£©2-1
=$\frac{34}{25}$£¨x0-$\frac{45}{34}$£©2+$\frac{191}{34}$£¨0¡Üx0¡Ü5£©£¬
¡àµ±x0=$\frac{45}{34}$ʱ£¬$\overrightarrow{AM}$•$\overrightarrow{BM}$È¡µÃ×îСֵΪ$\frac{191}{34}$£»
£¨3£©½áÂÛ£ºkPE•kPFÊǶ¨Öµ£¬ÇÒ¶¨ÖµÎª-$\frac{9}{25}$£®
ÀíÓÉÈçÏ£º
ÉèµãEµÄ×ø±êΪ£¨m£¬n£©£¬ÔòµãFµÄ×ø±êΪ£¨-m£¬-n£©¡¢$\frac{{m}^{2}}{25}+\frac{{n}^{2}}{9}=1$£¬
ÓÖÉèµãPµÄ×ø±êΪ£¨x£¬y£©£¬Ôò$\frac{{x}^{2}}{25}+\frac{{y}^{2}}{9}=1$£¬
ÓÉkPE=$\frac{y-n}{x-m}$£¬kPF=$\frac{y+n}{x+m}$£¬µÃ£ºkPE•kPF=$\frac{y-n}{x-m}$•$\frac{y+n}{x+m}$=$\frac{{y}^{2}-{n}^{2}}{{x}^{2}-{m}^{2}}$£¬
»¯¼òµÃ£ºkPE•kPF=$\frac{\frac{9}{25}£¨{m}^{2}-{x}^{2}£©}{{x}^{2}-{m}^{2}}$=-$\frac{9}{25}$£®

µãÆÀ ±¾ÌâÊÇÒ»µÀÖ±ÏßÓëÔ²×¶ÇúÏßµÄ×ÛºÏÌ⣬¿¼²éÔËËãÇó½âÄÜÁ¦£¬¿¼²é·ÖÎöÎÊÌâ¡¢½â¾öÎÊÌâµÄÄÜÁ¦£¬×¢Òâ½âÌâ·½·¨µÄ»ýÀÛ£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®Ö±Ïßl ½»ÍÖÔ²$\frac{x^2}{8}+\frac{y^2}{4}$=1ÓÚM¡¢NÁ½µã£¬ÍÖÔ²µÄÉ϶¥µãΪBµã£¬Èô¡÷BMNµÄÖØÐÄÇ¡ºÃÂäÔÚÍÖÔ²µÄÓÒ½¹µãÉÏ£¬ÔòÖ±ÏßlµÄ·½³ÌÊÇ£¨¡¡¡¡£©
A£®2x-3y-9=0B£®3x-2y-11=0C£®3x+2y-7=0D£®x-y-5=0

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

18£®ÒÑÖª£ºx¡Ê£¨0£¬+¡Þ£©£¬¹Û²ìÏÂÁÐʽ×Ó£ºx+$\frac{1}{x}¡Ý2£¬x+\frac{4}{x^2}=\frac{x}{2}+\frac{x}{2}+\frac{4}{x^2}$¡Ý3¡­Àà±ÈÓÐx+$\frac{a}{x^n}¡Ýn+1£¨{n¡Ê{N^*}}£©$£¬ÔòaµÄֵΪnn£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®Èô¶þÔªÒ»´ÎÏßÐÔ·½³Ì×é$\left\{\begin{array}{l}{x+ay=3}\\{ax+4y=6}\end{array}\right.$Î޽⣬ÔòʵÊýaµÄÖµÊÇ-2£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®²»µÈʽ|x+3|£¼4µÄ½âÊÇ£¨¡¡¡¡£©
A£®{x|x£¼-7}B£®{x|-7£¼x£¼1}C£®{x|x£¾1}D£®{x|x£¼-7»òx£¾1}

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

9£®ÒÑÖªº¯Êýf£¨x£©=Asin3x£¬x¡ÊR£¬ÇÒf£¨$\frac{5}{12}$¦Ð£©=$\frac{\sqrt{2}}{2}$£®
£¨1£©ÇóAµÄÖµ£»
£¨2£©Èôf£¨¦È£©-f£¨-¦È£©=$\frac{3}{2}$£¬¦È¡Ê£¨0£¬$\frac{¦Ð}{2}$£©£¬Çóf£¨$\frac{3¦Ð}{4}$-¦È£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®Óɹ۲âµÄÑù±¾Êý¾ÝËãµÃ±äÁ¿xÓëyÂú×ãÏßÐԻع鷽³Ì$\widehaty=0.6x-0.5$£¬ÒÑÖªÑù±¾Æ½¾ùÊý$\overline x=5$£¬ÔòÑù±¾Æ½¾ùÊý$\overline y$µÄֵΪ£¨¡¡¡¡£©
A£®0.5B£®1.5C£®2.5D£®3.5

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

13£®¼×ÒÒÁ½Î»Í¬Ñ§×î½üÎå´ÎÄ£¿¼Êýѧ³É¼¨¾¥Ò¶Í¼Èçͼ£¬Ôòƽ¾ù·ÖÊý½Ï¸ßºÍ³É¼¨±È½ÏÎȶ¨µÄ·Ö±ðÊÇ£¨¡¡¡¡£©
A£®¼×¡¢¼×B£®ÒÒ¡¢¼×C£®¼×¡¢ÒÒD£®ÒÒ¡¢ÒÒ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®ÒÑÖªÏòÁ¿$\vec a£¬\vec b$Âú×ã|$\overrightarrow{a}$|=$\sqrt{3}$£¬|$\overrightarrow{b}$|=2£¬|$\overrightarrow{a}$+$\overrightarrow{b}$|=$\sqrt{5}$£¬ÔòÏòÁ¿$\vec a$Óë$\vec b$¼Ð½ÇµÄÓàÏÒֵΪ-$\frac{\sqrt{3}}{6}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸