精英家教网 > 高中数学 > 题目详情
等差数列{an}的前n项和为Sn,等比数列{bn}的公比为
1
2
,满足S3=15,a1+2b1=3,a2+4b2=6.
(Ⅰ)求数列{an},{bn}的通项公式an,bn
(Ⅱ)求数列{an•bn}的前n项和Tn
考点:数列的求和,等差数列的性质,等比数列的性质
专题:等差数列与等比数列
分析:(Ⅰ)设{an}公差为d,由已知条件,利用等差数列和等比数列通项公式求出首项和公差,由此能求出an=3n-1,bn=(
1
2
n
(Ⅱ)由an•bn=(3n-1)•(
1
2
)n
,利用错位相减法能求出数列{an•bn}的前n项和Tn
解答: (Ⅰ)解:设{an}公差为d,
∵等差数列{an}的前n项和为Sn,等比数列{bn}的公比为
1
2

满足S3=15,a1+2b1=3,a2+4b2=6.
a1+d=5
a1+2b1=3
a1+d+2b1=6

解得a1=2,d=3,b1=
1
2
,…(4分)
∴an=3n-1,bn=(
1
2
n.…(6分)
(Ⅱ)解:由(Ⅰ)知an•bn=(3n-1)•(
1
2
)n

Sn=2×
1
2
+5×(
1
2
)2+8×(
1
2
)3
+…+(3n-1)×(
1
2
)n
,①
1
2
Sn=2×(
1
2
)2+5×(
1
2
)3+
…+(3n-4)•(
1
2
)n
+(3n-1)•(
1
2
)n+1
,②…(8分)
①-②得:
1
2
Sn=2×
1
2
+3×[(
1
2
)2+(
1
2
)3+…+(
1
2
)n]
-(3n-1)•(
1
2
n+1
=1+3•
1
4
[1-(
1
2
)n-1]
1-
1
2
-(3n-1)•(
1
2
)n+1
,…(10分)
整理得Sn=5-(3n+5)•(
1
2
)n
.…(12分)
点评:本题考查数列的通项公式的求法,考查数列的前n项和的求法,解题时要认真审题,注意错位相减法的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在平面直角坐标系xOy中,设圆x2+y2=1在矩阵A=
10
02
对应的变换作用下得到曲线F,求曲线F的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,已知位于y轴左侧的圆C与y轴相切于点(0,1),且被x轴分成的两段弧长之比为2:1,过点H(0,t)的直线l与圆C相交于M,N两点,且以MN为直径的圆恰好经过坐标原点O.
(1)求圆C的方程;
(2)当t=1时,求出直线l的方程;
(3)求直线OM的斜率k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图所示的几何体中,PB⊥平面ABC,PQ∥AB,PQ=PB=1,AB=BC=
1
2
,∠ABC=90°,M∈PB,N∈PC.
(1)求QC与平面ABC所成角的正弦值.
(2)若QC⊥平面AMN,求线段MN的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
m
=(1,sinx),
n
=(2,1),函数f(x)=
m
n

(1)求函数f(x)在区间[0,
π
2
]上的最大值;
(2)若△ABC的内角A、B所对的边分别为a、b且f(A)=
14
5
,f(B)=
31
13
,a+b=77,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

某工厂生产甲、乙两种产品,已知生产甲种产品1吨需耗A种矿石8吨、B种矿石8吨、煤5吨;生产乙种产品1吨需耗A种矿石4吨、B种矿石8吨、煤10吨.每1吨甲种产品的利润是500元,每1吨乙种产品的利润是400元.工厂在生产这两种产品的计划中要求消耗A种矿石不超过320吨、B种矿石不超过400吨、煤不超过450吨.甲、乙两种产品应各生产多少吨能使利润总额达到最大?

查看答案和解析>>

科目:高中数学 来源: 题型:

已知{an}为等差数列,且a1+a3=8,a2+a4=12.数列{bn}的前n项和为Sn,且3Sn=bn+2,n∈N*
(1)求数列{an},{bn}的通项公式;
(2)设cn=
an   n为奇数
bn  n为偶数
,求数列{cn}的前2n+1项的和T2n+1

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,PA⊥底面ABCD,底面ABCD是平行四边形,∠BAD=60°,AD=2,AC=2
3
,E是PC的中点.
(Ⅰ)求证:PC⊥BD;
(Ⅱ)若四棱锥P-ABCD的体积为4,求DE与平面PAC所成的角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

为了适应市场需要,某地准备建一个圆形生猪储备基地(如图),它的附近有一条公路,从基地中心O处向东走1km是储备基地的边界上的点A,接着向东再走7km到达公路上的点B;从基地中心O向正北走8km到达公路的另一点C.现准备在储备基地的边界上选一点D,修建一条由D通往公路BC的专用线DE,则DE的最短距离为
 

查看答案和解析>>

同步练习册答案