精英家教网 > 高中数学 > 题目详情
曲线y=lnx-1在x=1处的切线方程为
 
考点:利用导数研究曲线上某点切线方程
专题:计算题,导数的概念及应用
分析:切线斜率k=y′|x=1=1,再求出切点的坐标,利用点斜式即可写出切线方程.
解答: 解:因为y=lnx-1,
所以y′=
1
x
,则切线斜率k=y′|x=1=1,
因为x=1时,y=-1,
所以在x=1处的切线方程为:y+1=x-1,即x-y-2=0.
故答案为:x-y-2=0.
点评:本题考查利用导数研究曲线上某点切线方程,考查直线方程的求法,考查导数的几何意义,属基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

从高三年级随机抽取100名学生,将他们的某次考试数学成绩绘制成频率分布直方图.由图中数据可知成绩在[130,140)内的学生人数为(  )
A、20B、25C、30D、35

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱锥P-ABCD中,底面ABCD为矩形,平面PAB⊥平面ABCD,PA⊥PB,BP=BC,E为PC的中点.
(1)求证:AP∥平面BDE;
(2)求证:BE⊥平面PAC.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3+x2-ax(a∈R).
(1)当a=0时,求与直线x-y-10=0平行,且与曲线y=f(x)相切的直线的方程;
(2)求函数g(x)=
f(x)
x
-alnx(x>1)的单调递增区间;
(3)如果存在a∈[3,9],使函数h(x)=f(x)+f′(x)(x∈[-3,b])在x=-3处取得最大值,试求b的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在四棱台ABCD-A1B1C1D1中,底面ABCD是平行四边形,DD1⊥平面ABCD,AB=2AD,AD=A1B1,∠BAD=60°.
(1)证明:BD⊥平面ADD1A1
(2)证明:CC1∥平面A1BD.

查看答案和解析>>

科目:高中数学 来源: 题型:

复数z=(1-i)a2-3a+2+i(a∈R),
(1)若z=
.
z
,求|z|;
(2)若在复平面内复数z对应的点在第一象限,求a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知m∈R,命题p:对任意x∈[-1,1],不等式2x-1≥m2-4m恒成立;命题q:存在 x∈[-1,1],使得ax≥m成立.
(Ⅰ)若p为真命题,求m的取值范围.
(Ⅱ)当a=2,若p∧q为假,p∨q为真,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}的前n项和Sn满足Sn=2an-n(其中n∈N*).
(1)求证:数列{an+1}是等比数列,并求数列{an}的通项公式;
(2)若bn=
log2(an+1)
2n
,且Tn=b1+b2+b3+…+bn,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,若AB=3,B=75°,C=60°,则BC=
 

查看答案和解析>>

同步练习册答案