精英家教网 > 高中数学 > 题目详情
已知m∈R,命题p:对任意x∈[-1,1],不等式2x-1≥m2-4m恒成立;命题q:存在 x∈[-1,1],使得ax≥m成立.
(Ⅰ)若p为真命题,求m的取值范围.
(Ⅱ)当a=2,若p∧q为假,p∨q为真,求m的取值范围.
考点:复合命题的真假
专题:简易逻辑
分析:先化简命题p,q,再利用“或”“且”“非”的意义即可得出.
解答: 解:对于命题p:对任意x∈[-1,1],不等式2x-1≥m2-4m恒成立,
∴m2-4m≤(2x-1)min=-3,
∴m2-4m+3≤0,
解得1≤m≤3.
∴m的取值范围是[1,3];
(I)若p为真命题,则m的取值范围是[1,3].
(II)当a=2时,
对于命题q:存在 x∈[-1,1],使得2x≥m成立.
∴m≤(2x)max=2.
∵p∧q为假,p∨q为真,
∴p与q一真一假.
当p真q假时,
1≤m≤3
m>2
,解得2<m≤3.
当q真p假时,
m<1或m>3
m≤2
,解得m<1.
综上可得m的取值范围是:m<1或2<m≤3.
点评:本题考查了简易逻辑的有关知识、不等式的解法,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知数列{an}满足a1=2,an=nan-1(n≥2),则a5=(  )
A、240B、120
C、60D、30

查看答案和解析>>

科目:高中数学 来源: 题型:

某高中有高一、高二、高三共三个学年,根据学生的综合测评分数分为学优生和非学优生两类,某月三个学年的学优生和非学优生的人数如表所示(单位:人),若用分层抽样的方法从三个学年中抽取50人,则高一共有10人.
高一学年 高二学年 高三学年
学优生 100 150 z
非学优生 300 450 600
(1)求z的值;
(2)用随机抽样的方法从高二学年学优生中抽取8人,经检测他们的得分如下:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2.把这8人的得分看作一个总体,从中任取一个分数a.记这8人的得分的平均数为
.
x
,定义事件E={|a-
.
x
|≤0.5,且f(x)=ax2-ax+2.31没有零点},求事件E发生的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

曲线y=lnx-1在x=1处的切线方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

等差数列{an}和{bn}的前n项和分别为Sn和Tn,已知
a5
b5
=
2
3
,求
S9
T9

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2lnx-x2+ax(a∈R)
(Ⅰ)当a=2时,求f(x)的图象在x=1处的切线方程;
(Ⅱ)若函数g(x)=f(x)-ax+m在[
1
e
,e]上有两个零点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=x3+ax2+bx的图象关于点(1,1)对称,给出下列命题:
①f(x)在R上单调递增;
②f(x)在R上有极值;
③函数y=f(x+1)-1是奇函数;
④函数y=f(x)-x必有三个零点.则其中假命题的序号是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

数列{an}的前n项和为Sn,a1=1,对任意n∈N*
4Sn
n
=an+1-n2-2n-1

(1)求a2
(2)求数列{an}的通项公式;
(3)求证:
1
a1
+
1
a2
+
1
a3
+…+
1
an
5
4

查看答案和解析>>

科目:高中数学 来源: 题型:

已知两条曲线ρsin(
π
4
+θ)=
2
x=1+
5
sinθ
y=2+
5
cosθ
(θ为参数,θ∈R)相交于A,B两点,则AB=
 

查看答案和解析>>

同步练习册答案