分析 由双曲线的定义可得|PF1|-|PF2|=2a,结合直径所对的圆周角为直角,运用勾股定理和离心率公式,计算即可得到所求值.
解答
解:由双曲线的定义可得|PF1|-|PF2|=2a,
$\frac{P{F}_{1}}{P{F}_{2}}$=2,可得|PF1|=4a,|PF2|=2a,
即为|EF1|+|EP|=4a,
又|EF1|-|EP|=2a,
可得|EF1|=3a,|EP|=a,|EF2|=$\sqrt{4{a}^{2}-{a}^{2}}$=$\sqrt{3}$a,
即有4c2=9a2+3a2,即c2=3a2,
e=$\frac{c}{a}$=$\sqrt{3}$,
故答案为:$\sqrt{3}$.
点评 本题考查双曲线的离心率的求法,注意运用双曲线的定义和勾股定理,考查化简整理的运算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{21}{20}$ | B. | -2 | C. | -$\frac{21}{10}$ | D. | -$\frac{21}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4个 | B. | 3个 | C. | 2个 | D. | 1个 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com