精英家教网 > 高中数学 > 题目详情
3.已知角α的终边经过点P (2,-3),求角α的正弦、余弦、正切值.

分析 由题意求出r=OP=$\sqrt{13}$,利用任意角的三角函数定义,即可求出结果.

解答 解:角α的终边经过点P (2,-3),
∴x=2,y=-3,
∴r=OP=$\sqrt{{2}^{2}{+(-3)}^{2}}$=$\sqrt{13}$,
∴sinα=$\frac{y}{r}$=-$\frac{3\sqrt{13}}{13}$,
cosα=$\frac{x}{r}$=$\frac{2\sqrt{13}}{13}$,
tanα=$\frac{y}{x}$=-$\frac{3}{2}$.

点评 本题考查任意角三角函数的定义以及两点间距离公式的应用问题,熟记三角函数的定义是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

13.无穷等比数列首项为1,公比为q(q>0)的等边数列前n项和为Sn,则$\underset{lim}{n→∞}$Sn=2,则q=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)=x+sinx(x∈R),且f(y2-8x+11)+f(x2-6y+10)≤0,则当y≥3时,函数F(x,y)=x2+y2的最小值与最大值的和为62.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在区间[0,1]上随机抽取两个数x,y,则事件“xy≥$\frac{1}{2}$”发生的概率为$\frac{1}{2}$-$\frac{1}{2}$ln2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设集合A={(x,y)|ax+y=1},B={(x,y)|x+ay=1},C={(x,y)|x2+y2=1}.
(1)当a为何值时,A∩C≠∅;
(2)当a为何值时,(A∪B)∩C是仅含有两个元素的集合;
(3)当a为何值时,(A∪B)∩C是仅含有三个元素的集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知sinα+cosα=$\frac{7}{5}$,求tanα+cotα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知$\overrightarrow{a}$=(2,2$\sqrt{3}$-4),$\overrightarrow{b}$=(1,1),则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为(  )
A.120°B.60°C.150°D.30°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知双曲线C1:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1的左右焦点分别为F1,F2.以原点O为圆心,OF1为半径的圆记为曲线C2.P为双曲线C1右支上的一点,PF1交圆C2于点E,若有|EF1|-|EP|=2a,$\frac{P{F}_{1}}{P{F}_{2}}$=2,则双曲线的离心率为$\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知三角形OAB三顶点坐标分别为(0,0)、(2,0)、(0,2),直线y=k(x-a)将三角形OAB分成面积相等的两部分,若0≤a≤1,则实数k的取值范围是[1,+∞)∪(-∞,-2].

查看答案和解析>>

同步练习册答案