精英家教网 > 高中数学 > 题目详情
15.已知函数f(x)=6ln x(x>0)和g(x)=ax2+8x-b(a,b为常数)的图象在x=3处有公共切线.
(1)求a的值;
(2)求函数F(x)=f(x)-g(x)的极大值和极小值;
(3)若关于x的方程f(x)=g(x)有且只有3个不同的实数解,求b的取值范围.

分析 (1)先对两个函数求导,再由题目条件知,f′(3)=g′(3)从而建立关于a的方程,可求得a的值.
(2)由(1)确定了函数及其导数的解析式,通过探讨导数的符号得函数的单调性,即可的函数的极大值和极小值.
(3)根据题意,F(x)=f(x)-g(x)=6ln x+x2-8x+b的图象应与x轴有三个公共点.即方程f(x)=g(x)有且只有3个不同的实数解的充要条件为$\left\{\begin{array}{l}F(1)>0\\ F(3)<0.\end{array}$

解答 解:(1)因f′(x)=$\frac{6}{x}$,g′(x)=2ax+8,
依题意,得f′(3)=g′(3),
解得a=-1.
(2)F(x)=f(x)-g(x)=6ln x+x2-8x+b.
则F′(x)=$\frac{6}{x}$+2x-8=0,
得x=1或x=3.
∴当0<x<1时,F′(x)>0,F(x)单调递增;
当1<x<3时,F′(x)<0,F(x)单调递减;
当x>3时,F′(x)>0,F(x)单调递增.
∴F(x)的极大值为F(1)=b-7;F(x)的极小值为F(3)=b-15+6ln 3.
(3)根据题意,F(x)=f(x)-g(x)=6ln x+x2-8x+b的图象应与x轴有三个公共点.
即方程f(x)=g(x)有且只有3个不同的实数解的充要条件为$\left\{\begin{array}{l}F(1)>0\\ F(3)<0.\end{array}$
解得7<b<15-6ln 3.
∴b的取值范围为(7,15-6ln 3)

点评 本题主要考查了利用导数研究函数的极值,同时考查了导数的几何意义,以及学生灵活转化题目条件的能力,是个中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知O是边长为1的正三角形ABC的中心,则($\overrightarrow{OA}$+$\overrightarrow{OB}$)•($\overrightarrow{OA}$+$\overrightarrow{OC}$)=-$\frac{1}{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数y=ex与函数y=lnx的图象关于直线y=x对称,请根据这一结论求:$\int_1^2$lnxdx=2ln2-1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列命题中错误的是(  )
A.若m∥n,n⊥β,m?α,则α⊥βB.若α⊥γ,β⊥γ,α∩β=l,则l⊥γ
C.若α⊥β,a?α,则a⊥βD.若α⊥β,a∩β=AB,a∥α,a⊥AB,则a⊥β

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1( a>b>0 ) 的离心率为$\frac{\sqrt{3}}{3}$,焦距为2.则椭圆方程为$\frac{{x}^{2}}{3}+\frac{{y}^{2}}{2}=1$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.在极坐标系中,点$(2,\frac{5π}{6})$到直线$ρsin(θ-\frac{π}{3})=4$的距离为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=ex+ln(x+1).
(Ⅰ)求曲线y=f(x)在点(0,f(0))处的切线方程;
(Ⅱ)当x≥0时,f(x)≥ax+1成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.求函数f(x,y)=x3+y3-3xy的极值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=xlnx.
(1)求函数y=f(x)的单调区间和最小值;
(2)若函数F(x)=$\frac{f(x)-a}{x}$在[1,e]上的最小值为$\frac{3}{2}$,求a的值;
(3)若k∈Z,且f(x)+x-k(x-1)>0对任意x>1恒成立,求k的最大值.

查看答案和解析>>

同步练习册答案