精英家教网 > 高中数学 > 题目详情
12.设f(x)是R上的偶函数,f(1)=0,且在(0,+∞)上是增函数,则(x-1)f(x-1)>0的解集是(0,1)∪(2,+∞).

分析 根据函数奇偶性和单调性的关系先求出f(x)>0和f(x)<0的解集,进行求解即可.

解答 解:∵f(x)是R上的偶函数,f(1)=0,且在(0,+∞)上是增函数,
∴f(-1)=f(1)=0,
则函数f(x)对应的图象如图:
即当x>1或x<-1时,f(x)>0,
当0<x<1或-1<x<0时,f(x)<0,
则不等式(x-1)f(x-1)>0等价为$\left\{\begin{array}{l}{x-1>0}\\{f(x-1)>0}\end{array}\right.$或$\left\{\begin{array}{l}{x-1<0}\\{f(x-1)<0}\end{array}\right.$,
即$\left\{\begin{array}{l}{x>1}\\{x-1>1或x-1<-1}\end{array}\right.$或$\left\{\begin{array}{l}{x<1}\\{0<x-1<1或-1<x-1<1}\end{array}\right.$,
即$\left\{\begin{array}{l}{x>1}\\{x>2或x<0}\end{array}\right.$或$\left\{\begin{array}{l}{x<1}\\{1<x<2或0<x<2}\end{array}\right.$,
即x>2或0<x<1,
即不等式的解集为(0,1)∪(2,+∞),
故答案为:(0,1)∪(2,+∞)

点评 本题主要考查不等式的求解,根据函数奇偶性和单调性的关系,利用数形结合求出f(x)>0和f(x)<0的解集是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知函数f(x)=ex-mx+1的图象是曲线C,若曲线C不存在与直线y=ex垂直的切线,则实数m的取值范围是(  )
A.(-∞,-$\frac{1}{e}$)B.[$\frac{1}{e}$,+∞)C.(-∞,$\frac{1}{e}$)D.(-∞,$\frac{1}{e}$]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知数列{an}的前n项和为Sn,且a1=$\frac{1}{2},{a_{n+1}}=\frac{n+1}{2n}{a_n}$.
(1)求{an}的通项公式;
(2)设bn=n(2-Sn),n∈N*,若bn≤λ,n∈N*恒成立,求实数λ的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.直线(m+3)x+my-6=0过定点(2,-2),它与圆x2-4x+y2-1=0的位置关是相交.(填:相交、相切、相离或不确定)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知全集U=R,$A=\left\{{x|{x^2}-3x=0}\right\},B=\left\{{x|x>\frac{1}{4}}\right\}$,则A∩∁UB={0}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知集合M是满足下列性质的函数f(x)的全体:
在定义域(0,+∞)内存在x0,使函数f(x0+1)≤f(x0)f(1)成立;
(1)请给出一个x0的值,使函数$f(x)=\frac{1}{x}∈M$;
(2)函数f(x)=x2-x-2是否是集合M中的元素?若是,请求出所有x0组成的集合;若不是,请说明理由;
(3)设函数$f(x)=\frac{a}{{{x^2}+2}}∈M$,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若函数$f(x)=\frac{x-1}{x+2}$在(-2,4)上的值域为$(-∞,\frac{1}{2})$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.与直线2x+3y+5=0垂直,且经过点(1,1)的直线方程是3x-2y-1=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数y=sin4x-cos4x是一个(  )
A.周期为π的奇函数B.周期为π的偶函数
C.周期为$\frac{π}{2}$的奇函数D.周期为$\frac{π}{2}$的偶函数

查看答案和解析>>

同步练习册答案