精英家教网 > 高中数学 > 题目详情
2.已知函数f(x)=ex-mx+1的图象是曲线C,若曲线C不存在与直线y=ex垂直的切线,则实数m的取值范围是(  )
A.(-∞,-$\frac{1}{e}$)B.[$\frac{1}{e}$,+∞)C.(-∞,$\frac{1}{e}$)D.(-∞,$\frac{1}{e}$]

分析 求出函数的导数,设切点为(s,t),求得切线的斜率,若曲线C不存在与直线y=ex垂直的切线,则关于s的方程es-m=-$\frac{1}{e}$无实数解,由指数函数的值域,即可得到m的范围.

解答 解:函数f(x)=ex-mx+1的导数为f′(x)=ex-m,
设切点为(s,t),即有切线的斜率为es-m,
若曲线C不存在与直线y=ex垂直的切线,
则关于s的方程es-m=-$\frac{1}{e}$无实数解,
由于es>0,即有m-$\frac{1}{e}$≤0,
解得m≤$\frac{1}{e}$.
故选:D.

点评 本题考查导数的几何意义:函数在某点处的导数即为曲线在该点处的切线的斜率,同时考查两直线垂直的条件,运用指数函数的值域是解题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

7.f(x)=loga[($\frac{1}{a}-1$)x+1]在[1,2]上恒小于0.则a的取值范围是0<a<1,或1<a<2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列函数中,既不是奇函数,也不是偶函数的是(  )
A.f(x)=$\frac{1}{1+{x}^{2}}$B.f(x)=x2+xC.f(x)=cos$\frac{x}{3}$D.f(x)=$\frac{2}{x}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知某几何体的三视图的侧视图是一个正三角形,如图所示,则该几何体的体积等于(  )
A.12$\sqrt{3}$B.16$\sqrt{3}$C.20$\sqrt{3}$D.32$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.如果函数y=b与函数y=x2-3|x-1|-4x-3的图象恰好有三个交点,则b=$-6或-\frac{25}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.函数f(x)=Asin(ωx+$\frac{π}{6}$)(A>0,ω>0)的图象与x轴的交点的横坐标构成一个公差为$\frac{π}{2}$的等差数列,要得到函数g(x)=Acosωx的图象,只需将f(x)的图象(  )
A.向左平移$\frac{π}{6}$个单位B.向右平移$\frac{π}{3}$个单位
C.向左平移$\frac{2π}{3}$个单位D.向右平移$\frac{2π}{3}$个单位

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知等比数列{an}中a1=2,a4=16,数列{bn}满足bn=1+3log2an
(1)求数列{an}和{bn}的通项公式;
(2)设cn=an+bn,求数列{cn}的前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.集合A={x|ax-3=0,a∈Z},若A?N*,则a形成的集合为{0,1,3}.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设f(x)是R上的偶函数,f(1)=0,且在(0,+∞)上是增函数,则(x-1)f(x-1)>0的解集是(0,1)∪(2,+∞).

查看答案和解析>>

同步练习册答案