精英家教网 > 高中数学 > 题目详情
20.已知a>b,一元二次不等式ax2+2x+b≥0对于一切实数x恒成立,又?x0∈R,使ax02+2x0+b=0成立,则2a2+b2的最小值为(  )
A.1B.$\sqrt{2}$C.2D.2$\sqrt{2}$

分析 根据二次函数的性质求出ab=1,根据基本不等式的性质求出2a2+b2的最小值即可.

解答 解:∵已知a>b,二次不等式ax2+2x+b≥0对于一切实数x恒成立,
∴a>0,且△=4-4ab≤0,∴ab≥1.
再由?x0∈R,使ax02+2x0+b=0成立,可得△=0,∴ab=1,
∴2a2+b2≥2$\sqrt{{{2a}^{2}b}^{2}}$=2$\sqrt{2}$,
当且仅当2a2=b2即b=$\sqrt{2}$a时“=”成立,
故选:D.

点评 本题考查了二次函数的性质,考查不等式的性质,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.若角θ满足sinθ<0,tanθ<0,则角θ是(  )
A.第一象限角或第二象限角B.第二象限角或第四象限角
C.第三象限角D.第四象限角

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知$\overrightarrow a$=(cosα,sinα),$\overrightarrow b$=(cosβ,sinβ),(0<β<α<π).
(1)若$|{\overrightarrow a+\overrightarrow b}|=\sqrt{2}$,求证:$\overrightarrow a⊥\overrightarrow b$;
(2)设$\overrightarrow c=({0,1})$,若$\overrightarrow a+\overrightarrow b=\overrightarrow c$,求α,β的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.在边长为2的正三角形ABC中,设$\overrightarrow{BC}$=2$\overrightarrow{BD}$,$\overrightarrow{CA}$=3$\overrightarrow{CE}$,则$\overrightarrow{AD}$•$\overrightarrow{BE}$=-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=x2-(a+1)x+1(a∈R).
(1若关于x的不等式f(x)<0的解集是{x|m<x<2},求a,m的值;
(2)设关于x的不等式f(x)≤0的解集是A,集合B={x|0≤x≤1},若 A∩B=∅,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.命题“?x≠0,x2>0”的否定是(  )
A.?x≠0,x2≤0B.?x=0,x2≤0C.?x0≠0,${x_0}^2≤0$D.?x0=0,${x_0}^2≤0$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数y=ax3-1在(-∞,+∞)上是减函数,则实数a的取值范围为(-∞,0).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.抛物线y=$\frac{1}{8}$x2的准线方程为(  )
A.$y=-\frac{1}{32}$B.y=-2C.x=-2D.x=-$\frac{1}{32}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知椭圆C:$\frac{y^2}{a^2}+\frac{x^2}{b^2}=1(a>b>0)$的上下两个焦点分别为F1,F2,过点F1与y轴垂直的直线交椭圆C于M、N两点,△MNF2的面积为$\sqrt{3}$,椭圆C的离心率为$\frac{\sqrt{3}}{2}$
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)已知O为坐标原点,直线l:y=kx+m与y轴交于点P(P不与原点O重合),与椭圆C交于A,B两个不同的点,使得$\overrightarrow{AP}=3\overrightarrow{PB}$,求m的取值范围.

查看答案和解析>>

同步练习册答案