13£®Ä³ÖÖÓÎÏ·ÖУ¬ºÚ¡¢»ÆÁ½¸ö¡°µç×Ó¹·¡±´ÓÀⳤΪ1µÄÕý·½ÌåABCD-A1B1C1D1µÄ¶¥µãA³ö·¢ÑØÀâÏòǰÅÀÐУ¬Ã¿ÅÀÍêÒ»ÌõÀâ³ÆÎª¡°ÅÀÍêÒ»¶Î¡±£®ºÚ¡°µç×Ó¹·¡±ÅÀÐеÄ·ÏßÊÇAA1¡úA1D1¡ú£¬»Æ¡°µç×Ó¹·¡±ÅÀÐеÄ·ÏßÊÇAB¡úBB1¡ú£¬ËüÃǶ¼×ñÑ­ÈçϹæÔò£ºËùÅÀÐеĵÚi+2¶ÎÓëµÚi¶ÎËùÔÚÖ±Ïß±ØÐëÊÇÒìÃæÖ±Ïߣ¨ÆäÖÐiÊÇÕýÕûÊý£©£®ÉèºÚ¡°µç×Ó¹·¡±ÅÀÍê2016¶Î¡¢»Æ¡°µç×Ó¹·¡±ÅÀÍê2015¶Îºó¸÷×ÔÍ£Ö¹ÔÚÕý·½ÌåµÄij¸ö¶¥µã´¦£¬ÕâʱºÚ¡¢»Æ¡°µç×Ó¹·¡±¼äµÄ¾àÀëÊÇ1£®

·ÖÎö Ïȸù¾ÝÌâÒâµÃµ½ºÚ¡°µç×Ó¹·¡±Óë»Æ¡°µç×Ó¹·¡±¾­¹ý¼¸¶ÎºóÓֻص½ÆðµãµÃµ½ÖÜÆÚ£¬ÔÙ¼ÆËãºÚ¡°µç×Ó¹·¡±ÅÀÍê2016¶ÎºóʵÖÊÊǵ½´ïÄĸöµãÒÔ¼°¼ÆËã»Æ¡°µç×Ó¹·¡±ÅÀÍê2015¶ÎºóʵÖÊÊǵ½´ïÄĸöµã£¬×îºó¼ÆËã³öËüÃǵľàÀë¼´¿É£®

½â´ð ½â£ºÓÉÌâÒ⣬ºÚ¡°µç×Ó¹·¡±ÅÀÐзÏßΪAA1¡úA1D1¡úD1C1¡úC1C¡úCB¡úBA£¬¼´¹ý6¶ÎºóÓֻص½Æðµã£¬¿ÉÒÔ¿´×÷ÒÔ6ΪÖÜÆÚ£¬

ͬÀí£¬»Æ¡°µç×Ó¹·¡±ÅÀÐзÏßΪAB¡úBB1¡úB1C1¡úC1D1¡úD1D¡úDA£¬Ò²Êǹý6¶ÎºóÓֻص½Æðµã£®
ËùÒÔºÚ¡°µç×Ó¹·¡±ÅÀÍê2016¶ÎºóʵÖÊÊǵ½´ïµãA£¬
»Æ¡°µç×Ó¹·¡±ÅÀÍê2015¶Îºóµ½´ïµÚÈý¶ÎµÄÖÕµãD£®
´ËʱµÄ¾àÀëΪ|AD|=1£®
¹Ê´ð°¸Îª£º1

µãÆÀ ¹éÄÉÍÆÀíµÄÒ»°ã²½ÖèÊÇ£º£¨1£©Í¨¹ý¹Û²ì¸ö±ðÇé¿ö·¢ÏÖijЩÏàͬÐÔÖÊ£»£¨2£©´ÓÒÑÖªµÄÏàͬÐÔÖÊÖÐÍÆ³öÒ»¸öÃ÷È·±í´ïµÄÒ»°ãÐÔÃüÌ⣨²ÂÏ룩£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®ÒÑÖªº¯Êýf£¨x£©=£¨x-t£©2+£¨e2x-2t£©2£¬x¡ÊR£¬ÆäÖвÎÊýt¡ÊR£¬Ôòº¯Êýf£¨x£©µÄ×îСֵΪ£¨¡¡¡¡£©
A£®$\frac{1}{5}$B£®$\frac{\sqrt{5}}{5}$C£®$\frac{2}{5}$D£®$\frac{2\sqrt{5}}{5}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

4£®ÏÂÁк¯ÊýÖУ¬Í¬Ê±Âú×ãÌõ¼þ¢Ùf£¨-x£©=-f£¨x£©£»¢ÚÈôx1£¼x2ÓÐf£¨x1£©£¼f£¨x2£©µÄΪ£¨¡¡¡¡£©
A£®y=x+1B£®y=2cosxC£®y=-$\frac{1}{x}$D£®y=x|x|

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®ÒÑÖªº¯Êýf£¨x£©=x3+ax2+bx£¨a£¬b¡ÊR£©µÄͼÏóÓëÖ±Ïßy=0ÔÚÔ­µã´¦ÏàÇУ¬º¯Êýf£¨x£©Óм«Ð¡Öµ-$\frac{4}{27}$£¬ÔòaµÄֵΪ-1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®ÔÚÖ±½Ç×ø±êϵxOyÖУ¬ÇúÏßCµÄ²ÎÊý·½³ÌΪ$\left\{\begin{array}{l}{x=1+cos¦Á}\\{y=sin¦Á}\end{array}\right.$£¨¦ÁΪ²ÎÊý£©£¬ÔÚÒÔ×ø±êÔ­µãΪ¼«µã£¬xÖáÕý°ëÖáΪ¼«ÖáµÄ¼«×ø±êϵÖУ¬Ö±ÏßlµÄ¼«×ø±ê·½³ÌΪ¦Ñsin£¨$¦È+\frac{¦Ð}{4}$£©=2$\sqrt{2}$£®
£¨¢ñ£©ÇóÇúÏßCºÍÖ±ÏßlÔÚ¸ÃÖ±½Ç×ø±êϵÏÂµÄÆÕͨ·½³Ì£»
£¨¢ò£©¶¯µãAÔÚÇúÏßCÉÏ£¬¶¯µãBÔÚÖ±ÏßlÉÏ£¬¶¨µãPµÄ×ø±êΪ£¨-2£¬2£©£¬Çó|PB|+|AB|µÄ×îСֵ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®ÒÑÖªº¯Êý$f£¨x£©={log_2}\frac{1-ax}{1+x}$ÊÇÆæº¯Êý£®
£¨1£©ÇóʵÊýaµÄÖµ£»
£¨2£©É躯Êýg£¨x£©=f£¨x£©-log2£¨mx£©£¬ÊÇ·ñ´æÔÚ·ÇÁãʵÊýmʹµÃº¯Êýg£¨x£©Ç¡ºÃÓÐÁ½¸öÁãµã£¿Èô´æÔÚ£¬Çó³ömµÄȡֵ·¶Î§£»Èô²»´æÔÚ£¬ËµÃ÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

5£®ÒÑÖªµãA£¨-2£¬1£©£¬y2=-4xµÄ½¹µãÊÇF£¬PÊÇy2=-4xÉϵĵ㣬Ϊʹ|PA|+|PF|È¡µÃ×îСֵ£¬PµãµÄ×ø±êÊÇ$£¨-\frac{1}{4}£¬1£©$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®Èç¹ûtan¦Á=$\frac{5}{12}$£¬ÄÇôcos¦ÁµÄֵΪ¡À$\frac{12}{13}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®Éèa=21.2£¬b=log38£¬c=0.83.1£¬Ôò£¨¡¡¡¡£©
A£®b£¼a£¼cB£®c£¼a£¼bC£®c£¼b£¼aD£®a£¼c£¼b

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸