| A. | 7.5 | B. | 7 | C. | 8.5 | D. | 8 |
分析 设直线AB的方程为:y=k(x-2),与抛物线方程联立化为:k2x2-(4k2+8)x+4k2=0,由|AF|=3|FB|,可得xA+2=3(xB+2),再利用根与系数的关系可得k,即可得出.
解答 解:设直线AB的方程为:y=k(x-2),
联立$\left\{\begin{array}{l}{y=k(x-2)}\\{{y}^{2}=8x}\end{array}\right.$,化为:k2x2-(4k2+8)x+4k2=0,
∴xA+xB=$\frac{4{k}^{2}+8}{{k}^{2}}$,xAxB=4.
∵|AF|=3|FB|,
∴xA+2=3(xB+2),
联立解得:k=$±\sqrt{3}$.
∴P$(-2,±4\sqrt{3})$.
∴|PF|=$\sqrt{{4}^{2}+(4\sqrt{3})^{2}}$=8.
故选:D.
点评 本题考查了抛物线的定义标准方程及其性质、弦长公式,考查了推理能力与计算能力,属于难题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 10 m | B. | 10$\sqrt{2}$ m | C. | 10$\sqrt{3}$ m | D. | 10$\sqrt{6}$ m |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 100 | B. | 99$\frac{1}{2}$ | C. | 99 | D. | 98$\frac{1}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com