精英家教网 > 高中数学 > 题目详情
12.已知函数f(x)=lnx-2[x]+3,其中[x]表示不大于x的最大整数(如[1.6]=1,[-2.1]=一3).则函数f(x)的零点个数是(  )
A.lB.2C.3D.4

分析 构造g(x)=lnx+3,k(x)=2[x],利用图象判断就看得出交点个数求解得出f(x)的零点个数.

解答 解:设g(x)=lnx+3,
k(x)=2[x],
g(x)与k(x)的交点的个数即可得出f(x)=lnx-2[x]+3的零点个数.

根据图形可判有2个交点,
故选:B

点评 本题考查了函数零点个数的判断,函数的图象直观地显示了函数的性质,函数零点问题,我们往往构造函数,利用函数的图象解题.体现了数形结合的数学思想.属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

2.如图,在三棱锥A-BCD中,△ACD与△BCD都是边长为2的正三角形,且平面ACD⊥平面BCD,则该三棱锥外接球的表面积为$\frac{20}{3}π$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知函数f(x)=ex,g(x)=x+a,a∈R.
(1)若曲线f(x)=ex与g(x)=x+a相切,求实数a的值;
(2)记h(x)=f(x)g(x),求h(x)在[0,1]上的最小值;
(3)当a=0时,试比较ef(x-2)与g(x)的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知Ω是不等式组$\left\{\begin{array}{l}{y≥2}\\{x-y≥1}\\{x+y≤6}\end{array}\right.$所确定的平面区域,记包含区域Ω的半径最小的圆为A,若在圆A内随机取出一点B,则点B在Ω内的概率为(  )
A.-$\frac{1}{π}$B.1-$\frac{2}{π}$C.$\frac{1}{π}$D.$\frac{2}{π}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如图是一个旋转体的三视图,其中正视图,侧视图都是由半圆和矩形组成,则这个旋转体的体积是(  )
A.$\frac{8}{3}$πB.$\frac{7}{3}$πC.D.$\frac{5}{3}$π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=xetx-ex+1,其中t∈R,e=2.71828…是自然对数的底数.
(Ⅰ)当t=0时,求函数f(x)的最大值;
(Ⅱ)证明:当t<1-$\frac{1}{e}$时,方程f(x)=1无实数根;
(Ⅲ)若函数f(x)是(0,+∞)内的减函数,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.如图是一个空间几何体的三视图(俯视图外框为正方形),则这个几何体的体积为48-3π.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知函数f(x)=sin(ωx+φ)的单调增区间为$[kπ-\frac{π}{12}$,kπ+$\frac{5π}{12}]$(k∈Z),则函数f(x)在区间$[0,\frac{π}{2}]$的取值范围是(  )
A.$[-\frac{{\sqrt{3}}}{2},1]$B.$[-\frac{1}{2},\frac{{\sqrt{3}}}{2}]$C.$[-\frac{{\sqrt{3}}}{2},\frac{{\sqrt{3}}}{2}]$D.$[-\frac{1}{2},1]$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{3}}{2}$,它的顶点构成的四边形面积为4.过点(m,0)作x2+y2=b2的切线l交椭圆C于A、B两点.
(1)求椭圆C的方程;
(2)设O为坐标原点,求△OAB面积的最大值.

查看答案和解析>>

同步练习册答案