精英家教网 > 高中数学 > 题目详情
4.已知函数f(x)=x+$\frac{9}{x}$.
(Ⅰ)指出f(x)的定义域,并判断f(x)的奇偶性;
(Ⅱ)判断并证明f(x)在区间[3,+∞)上的单调性,并求f(x)在[3,+∞)上的最小值.

分析 (Ⅰ)根据分母不能为0,可得函数的定义域,进而根据函数奇偶性的定义,可得函数为偶函数.
(Ⅱ)证法一:设x1,x2是区间[3,+∞)上的两个任意实数,且x1<x2,作差判断f(x1),f(x2)的大小,可得结论
证法二:求导,根据x∈[3,+∞)时,f′(x)≥0恒成立,可得:函数f(x)在[3,+∞)上为单调递增函数;

解答 解:(Ⅰ)函数f(x)=x+$\frac{9}{x}$的定义域为{x|x≠0}关于原点对称,
∵f(-x)=-x-$\frac{9}{x}$=-(x+$\frac{9}{x}$)=-f(x).
∴函数f(x)是奇函数;
(Ⅱ)f(x)在区间[3,+∞)上单调递增,理由如下:
证法一:设x1,x2是区间[3,+∞)上的两个任意实数,且x1<x2,…(2分)
于是f(x1)-f(x2)=(${x}_{1}+\frac{9}{{x}_{1}}$)-(${x}_{2}+\frac{9}{{x}_{2}}$)=(x1-x2)$\frac{{x}_{1}•{x}_{2}-9}{{x}_{1}•{x}_{2}}$…(4分)
因为x2>x1≥3,所以x1x2-9≥0,x1-x2<0,
所以f(x1)-f(x2)<0,所以f(x1)<f(x2),…(6分)
所以函数f(x)在[3,+∞)上为单调增函数.…(7分)
证法二:∵f(x)=x+$\frac{9}{x}$.
∴f′(x)=1-$\frac{9}{{x}^{2}}$.
当x∈[3,+∞)时,
f′(x)≥0恒成立,
故函数f(x)在[3,+∞)上为单调递增函数;

点评 本题考查的知识点是抽象函数的应用,函数的单调性和函数的奇偶性,是函数图象和性质的综合应用,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.已知集合A={x|3≤x<6},B={x|2<x<9}.
(1)分别求:∁R(A∩B),(∁RB)∪A;
(2)已知C={x|a<x<a+1},若C⊆A,求实数a的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设数列{an}的前n项和为Sn.已知a1=1,$\frac{{2{S_n}}}{n}$=an+1-$\frac{1}{3}$n2-n-$\frac{2}{3}$,n∈N*
(1)求数列{an}的通项公式;
(2)设数列{bn}满足an-an-1=bna${\;}_{2^n}}$,求数列{bn}的n前项和Tn
(3)是否存在实数λ,使得不等式λa${\;}_{{{({\sqrt{2}})}^n}}}$-$\frac{λ}{{{a_{{{({\sqrt{2}})}^n}}}}}$+a${\;}_{2^n}}$+$\frac{1}{{{a_{2^n}}}}$≥0恒成立,若存在,求出λ的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知f(x)=x5+x3,x∈[-2,2],且f(m)+f(m-1)>0,则实数m的范围是(  )
A.($\frac{1}{2}$,+∞)B.($\frac{1}{2}$,2]C.[-1,$\frac{1}{2}$)D.(-∞,$\frac{1}{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设数列{an}的首项a1为常数,且an+1=3n-2an,(n∈N*
(1)证明:{an-$\frac{{3}^{n}}{5}$}是等比数列;
(2)若a1=$\frac{3}{2}$,{an}中是否存在连续三项成等差数列?若存在,写出这三项,若不存在说明理由.
(3)若{an}是递增数列,求a1的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知H是球O的直径AB上一点,AH:HB=1:3,AB⊥平面α,H为垂足,α截球O所得截面的面积为π,则球O的半径为$\frac{4\sqrt{15}}{15}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.如图是用二分法求方程x2-2=0在[-2,2]的近似解的程序框图,要求解的精确度为ε,①处填的内容是f(x1)•f(m)<0,②处填的内容是|x1-x2|<ε.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.为研究冬季昼夜温差大小对某反季节大豆新品种发芽率的影响,某农科所记录了5组昼夜温差与100颗种子发芽数,得到如表资料:
组号12345
温差x(°C)101113128
发芽数y(颗)2325302616
该所确定的研究方案是:先从这五组数据中选取2组,用剩下的3组数据求出线性回归方程,再对被选取的2组数据进行检验.
(1)若选取的是第1组与第5组的两组数据,请根据第2组至第4组的数据,求出y关于x的线性回归方程$\widehaty$=$\widehatb$x+$\widehata$;
(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(1)中所得的线性回归方程是否可靠?
(参考公式:$\widehatb$=$\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}$=$\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{{x_i}^2-n{{\overline x}^2}}}}$,$\widehata$=$\overline y$-$\widehatb$$\overline x$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知直线l1:$\left\{\begin{array}{l}x=t\\ y=\sqrt{3}t\end{array}$(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立直角坐标系,圆C1:ρ2-2$\sqrt{3}$ρcosθ-4ρsinθ+6=0.
(1)求圆C1的直角坐标方程,直线l1的极坐标方程;
(2)设l1与C1的交点为M,N,求△C1MN的面积.

查看答案和解析>>

同步练习册答案