分析 (1)由于an+1=3n-2an,(n∈N*),可得$\frac{{a}_{n+1}-\frac{1}{5}×{3}^{n+1}}{{a}_{n}-\frac{1}{5}×{3}^{n}}$=$\frac{\frac{2}{5}×{3}^{n}-2{a}_{n}}{{a}_{n}-\frac{1}{5}×{3}^{n}}$=-2,即可证明.
(2){an-$\frac{{3}^{n}}{5}$}是公比为-2,首项为a1-$\frac{3}{5}$=$\frac{9}{10}$的等比数列.通项公式为an=$\frac{{3}^{n}}{5}$+$\frac{9}{10}$×(-2)n-1,若{an}中存在连续三项成等差数列,则必有2an+1=an+an+2,代入解出即可得出.
(3)如果an+1>an成立,即$\frac{{3}^{n+1}}{5}$+$({a}_{1}-\frac{3}{5})×(-2)^{n}$>$\frac{{3}^{n}}{5}$+(a1-$\frac{3}{5}$)(-2)n-1对任意自然数均成立.化简得$\frac{4}{15}×{3}^{n}$>$-({a}_{1}-\frac{3}{5})$×(-2)n,对n分类讨论,利用数列的单调性即可得出.
解答 (1)证明:∵an+1=3n-2an,(n∈N*),
∴$\frac{{a}_{n+1}-\frac{1}{5}×{3}^{n+1}}{{a}_{n}-\frac{1}{5}×{3}^{n}}$=$\frac{\frac{2}{5}×{3}^{n}-2{a}_{n}}{{a}_{n}-\frac{1}{5}×{3}^{n}}$=-2,
∴数列{an-$\frac{{3}^{n}}{5}$}是等比数列.
(2)解:{an-$\frac{{3}^{n}}{5}$}是公比为-2,首项为a1-$\frac{3}{5}$=$\frac{9}{10}$的等比数列.
通项公式为an=$\frac{{3}^{n}}{5}$+(a1-$\frac{3}{5}$)(-2)n-1=$\frac{{3}^{n}}{5}$+$\frac{9}{10}$×(-2)n-1,
若{an}中存在连续三项成等差数列,则必有2an+1=an+an+2,
即$2[\frac{{3}^{n+1}}{5}+\frac{9}{10}×(-2)^{n}]$=$\frac{{3}^{n}}{5}$+$\frac{9}{10}×(-2)^{n-1}$+$\frac{{3}^{n+2}}{5}+$$\frac{9}{10}×(-2)^{n+1}$,
解得n=4,即a4,a5,a6成等差数列.
(3)解:如果an+1>an成立,
即$\frac{{3}^{n+1}}{5}$+$({a}_{1}-\frac{3}{5})×(-2)^{n}$>$\frac{{3}^{n}}{5}$+(a1-$\frac{3}{5}$)(-2)n-1对任意自然数均成立.
化简得$\frac{4}{15}×{3}^{n}$>$-({a}_{1}-\frac{3}{5})$×(-2)n,
当n为偶数时${a}_{1}>\frac{3}{5}$-$\frac{4}{15}×(\frac{3}{2})^{n}$,
∵p(n)=$\frac{3}{5}$-$\frac{4}{15}×(\frac{3}{2})^{n}$是递减数列,
∴p(n)max=p(2)=0,即a1>0;
当n为奇数时,a1$<\frac{3}{5}$+$\frac{4}{15}×(\frac{3}{2})^{n}$,
∵q(n)=$\frac{3}{5}$+$\frac{4}{15}×(\frac{3}{2})^{n}$是递增数列,
∴q(n)min=q(1)=1,即a1<1;
故a1的取值范围为(0,1).
点评 本题考查了数列的递推关系、等差数列与等比数列的定义与通项公式、数列的单调性、不等式解法,考查了分类讨论方法、推理能力与计算能力,属于难题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | x≥0 | B. | x<0或x>2 | C. | x<-$\frac{1}{2}$ | D. | x≤-$\frac{1}{2}$或x≥3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| x | -3 | -2 | -1 | 1 | 2 | 3 |
| f(x) | 5 | 1 | -1 | -3 | 3 | 5 |
| g(x) | 1 | 4 | 2 | 3 | -2 | -4 |
| A. | 3 | B. | 4 | C. | -3 | D. | 5 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | AB∥α | B. | AB?α | C. | AB与α相交 | D. | AB?α或AB∥α |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | k>98? | B. | k≥99? | C. | k≥100? | D. | k>101? |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $(\frac{2}{{3{e^2}}},\frac{1}{2e})$ | B. | $(\frac{2}{{3{e^2}}},\frac{1}{e})$ | C. | $[\frac{2}{{3{e^2}}},\frac{1}{2e})$ | D. | $[\frac{2}{{3{e^2}}},\frac{1}{e})$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com