精英家教网 > 高中数学 > 题目详情
8.运行如图所示的程序框图,若输出的结果为$\frac{50}{101}$,则判断框内可以填(  )
A.k>98?B.k≥99?C.k≥100?D.k>101?

分析 模拟执行程序框图,依次写出每次循环得到的S,k的值,当k=11时,由题意,此时满足条件,退出循环,输出S的值为$\frac{50}{101}$,则可得判断框中应该填的条件.

解答 解:模拟程序的运行,可得
s=0,k=1
不满足条件,执行循环体,s=$\frac{1}{1×3}$,k=3
不满足条件,执行循环体,s=$\frac{1}{1×3}$+$\frac{1}{3×5}$,k=5

观察规律可知:
不满足条件,执行循环体,s=$\frac{1}{1×3}$+$\frac{1}{3×5}$+$\frac{1}{5×7}$+…+$\frac{1}{99×101}$=$\frac{1}{2}$[(1-$\frac{1}{3}$)+($\frac{1}{3}$-$\frac{1}{5}$)+…+($\frac{1}{99}$-$\frac{1}{101}$)]=$\frac{1}{2}×$(1-$\frac{1}{101}$)=$\frac{50}{101}$,k=101
由题意,此时应该满足条件,退出循环,输出s的值为$\frac{50}{101}$,
则判断框内可以填k≥100?.
故选:C.

点评 本题主要考查程序框图的识别和运行,根据条件进行模拟运算是解决本题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

18.复数z=$\frac{3-{i}^{2015}}{1+i}$的共轭复数$\overline{z}$等于(  )
A.1+2iB.1-2iC.2+iD.2-i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设数列{an}的首项a1为常数,且an+1=3n-2an,(n∈N*
(1)证明:{an-$\frac{{3}^{n}}{5}$}是等比数列;
(2)若a1=$\frac{3}{2}$,{an}中是否存在连续三项成等差数列?若存在,写出这三项,若不存在说明理由.
(3)若{an}是递增数列,求a1的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.如图是用二分法求方程x2-2=0在[-2,2]的近似解的程序框图,要求解的精确度为ε,①处填的内容是f(x1)•f(m)<0,②处填的内容是|x1-x2|<ε.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.如图程序的输出结果为(  )
A.(4,3)B.(7,7)C.(7,10)D.(7,11)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.为研究冬季昼夜温差大小对某反季节大豆新品种发芽率的影响,某农科所记录了5组昼夜温差与100颗种子发芽数,得到如表资料:
组号12345
温差x(°C)101113128
发芽数y(颗)2325302616
该所确定的研究方案是:先从这五组数据中选取2组,用剩下的3组数据求出线性回归方程,再对被选取的2组数据进行检验.
(1)若选取的是第1组与第5组的两组数据,请根据第2组至第4组的数据,求出y关于x的线性回归方程$\widehaty$=$\widehatb$x+$\widehata$;
(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(1)中所得的线性回归方程是否可靠?
(参考公式:$\widehatb$=$\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}$=$\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{{x_i}^2-n{{\overline x}^2}}}}$,$\widehata$=$\overline y$-$\widehatb$$\overline x$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.天气预报说,未来三天每天下雨的概率都是0.6,用1、2、3、4表示不下雨,用5、6、7、8、9、0表示下雨,利用计算机生成下列20组随机数,则未来三天恰有两天下雨的概率大约是0.4.
757 220  582 092 103 000 181 249  414  993
010 732 680  596 761 835 463 521 186  289.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某公司制定了一个激励销售人员的奖励方案:当销售利润不超过8万元时,按销售利润的15%进行奖励;当销售利润超过8万元时,若超出A万元,则超出部分按log5(2A+1)进行奖励.记奖金为y(单位:万元),销售利润为x(单位:万元).
(1)写出奖金y关于销售利润x的关系式;
(2)如果业务员小江获得3.2万元的奖金,那么他的销售利润是多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=$\frac{1-x}{e^x}$.
(1)求曲线y=f(x)在点(0,f(0))处的切线方程和函数f(x)的极值:
(2)若对任意x1,x2∈[a,+∞),都有f(x1)-f(x2)≥-$\frac{1}{e^2}$成立,求实数a的最小值.

查看答案和解析>>

同步练习册答案