分析 (1)$\left\{\begin{array}{l}x=ρcosθ\\ y=ρsinθ\end{array}\right.$,将其代入C1得圆C1的直角坐标方程.由直线l1:$\left\{\begin{array}{l}x=t\\ y=\sqrt{3}t\end{array}$(t为参数),消去参数可得y=$\sqrt{3}$x,可即可化为极坐标方程.
(2)把$θ=\frac{π}{3}$代入可得${ρ^2}-3\sqrt{3}ρ+6=0$⇒$|{{ρ_1}-{ρ_2}}|=\sqrt{3}$,进而得出面积.
解答 解:(1)∵$\left\{\begin{array}{l}x=ρcosθ\\ y=ρsinθ\end{array}\right.$,将其代入C1得:${x^2}+{y^2}-2\sqrt{3}x-4y+6=0$,
∴圆C1的直角坐标方程为:${C_1}:{(x-\sqrt{3})^2}+{(y-2)^2}=1$.
由直线l1:$\left\{\begin{array}{l}x=t\\ y=\sqrt{3}t\end{array}$(t为参数),消去参数可得:y=$\sqrt{3}$x,可得$tanθ=\sqrt{3}⇒θ=\frac{π}{3}$(ρ∈R).
∴直线l1的极坐标方程为:$θ=\frac{π}{3}$(ρ∈R).
(2)$\left\{\begin{array}{l}θ=\frac{π}{3}\\{ρ^2}-2\sqrt{3}ρcosθ-4ρsinθ+6=0\end{array}\right.$,可得${ρ^2}-3\sqrt{3}ρ+6=0$⇒$|{{ρ_1}-{ρ_2}}|=\sqrt{3}$,
∴${S_{△{C_1}MN}}=\frac{1}{2}×\sqrt{3}×\frac{1}{2}=\frac{{\sqrt{3}}}{4}$.
点评 本题考查了极坐标方程化为直角坐标方程、参数方程化为普通方程、三角形面积计算公式,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $(\frac{2}{{3{e^2}}},\frac{1}{2e})$ | B. | $(\frac{2}{{3{e^2}}},\frac{1}{e})$ | C. | $[\frac{2}{{3{e^2}}},\frac{1}{2e})$ | D. | $[\frac{2}{{3{e^2}}},\frac{1}{e})$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{\sqrt{14}}{4}$ | C. | $\frac{\sqrt{2}}{2}$ | D. | $\frac{\sqrt{3}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com