精英家教网 > 高中数学 > 题目详情
14.已知直线l1:$\left\{\begin{array}{l}x=t\\ y=\sqrt{3}t\end{array}$(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立直角坐标系,圆C1:ρ2-2$\sqrt{3}$ρcosθ-4ρsinθ+6=0.
(1)求圆C1的直角坐标方程,直线l1的极坐标方程;
(2)设l1与C1的交点为M,N,求△C1MN的面积.

分析 (1)$\left\{\begin{array}{l}x=ρcosθ\\ y=ρsinθ\end{array}\right.$,将其代入C1得圆C1的直角坐标方程.由直线l1:$\left\{\begin{array}{l}x=t\\ y=\sqrt{3}t\end{array}$(t为参数),消去参数可得y=$\sqrt{3}$x,可即可化为极坐标方程.
(2)把$θ=\frac{π}{3}$代入可得${ρ^2}-3\sqrt{3}ρ+6=0$⇒$|{{ρ_1}-{ρ_2}}|=\sqrt{3}$,进而得出面积.

解答 解:(1)∵$\left\{\begin{array}{l}x=ρcosθ\\ y=ρsinθ\end{array}\right.$,将其代入C1得:${x^2}+{y^2}-2\sqrt{3}x-4y+6=0$,
∴圆C1的直角坐标方程为:${C_1}:{(x-\sqrt{3})^2}+{(y-2)^2}=1$.
由直线l1:$\left\{\begin{array}{l}x=t\\ y=\sqrt{3}t\end{array}$(t为参数),消去参数可得:y=$\sqrt{3}$x,可得$tanθ=\sqrt{3}⇒θ=\frac{π}{3}$(ρ∈R).
∴直线l1的极坐标方程为:$θ=\frac{π}{3}$(ρ∈R).
(2)$\left\{\begin{array}{l}θ=\frac{π}{3}\\{ρ^2}-2\sqrt{3}ρcosθ-4ρsinθ+6=0\end{array}\right.$,可得${ρ^2}-3\sqrt{3}ρ+6=0$⇒$|{{ρ_1}-{ρ_2}}|=\sqrt{3}$,
∴${S_{△{C_1}MN}}=\frac{1}{2}×\sqrt{3}×\frac{1}{2}=\frac{{\sqrt{3}}}{4}$.

点评 本题考查了极坐标方程化为直角坐标方程、参数方程化为普通方程、三角形面积计算公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=x+$\frac{9}{x}$.
(Ⅰ)指出f(x)的定义域,并判断f(x)的奇偶性;
(Ⅱ)判断并证明f(x)在区间[3,+∞)上的单调性,并求f(x)在[3,+∞)上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.平面直角坐标系中,以原点O为圆心,r(r>0)为半径的定圆C1,与过原点且斜率为k(k≠0)的动直线交于P、Q两点,在x轴正半轴上有一个定点R(m,0),P、Q、R三点构成三角形,求:
(1)△PQR的面积S1的表达式,并求出S1的取值范围;
(2)△PQR的外接圆C2的面积S2的表达式,并求出S2的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知数列{an}是等比数列前n项和是Sn,若a2=2,a3=-4,则S5等于(  )
A.8B.-8C.11D.-11

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)=xex-mx+m,若f(x)<0的解集为(a,b),其中b<0;不等式在(a,b)中有且只有一个整数解,则实数m的取值范围是(  )
A.$(\frac{2}{{3{e^2}}},\frac{1}{2e})$B.$(\frac{2}{{3{e^2}}},\frac{1}{e})$C.$[\frac{2}{{3{e^2}}},\frac{1}{2e})$D.$[\frac{2}{{3{e^2}}},\frac{1}{e})$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.椭圆C的焦点在x轴上,一个顶点是抛物线E:y2=16x的焦点,过焦点且垂直于长轴的弦长为2,则椭圆的离心率为(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{14}}{4}$C.$\frac{\sqrt{2}}{2}$D.$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知函数f(x)=lnx-ax2,且函数f(x)在点(2,f(2))处的切线的斜率是-$\frac{1}{2}$,则a=$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列函数中,既是偶函数又在(0,+∞)上单调递减的函数是(  )
A.y=2x3B.y=|x|+1C.y=-x2+4D.y=2|x|

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知曲线C的极坐标方程为ρsin(θ+$\frac{π}{3}$)=3,以极点为坐标原点,极轴为x轴的正半轴建立平面直角坐标系,求曲线C的直角坐标方程.

查看答案和解析>>

同步练习册答案