精英家教网 > 高中数学 > 题目详情
5.平面直角坐标系中,以原点O为圆心,r(r>0)为半径的定圆C1,与过原点且斜率为k(k≠0)的动直线交于P、Q两点,在x轴正半轴上有一个定点R(m,0),P、Q、R三点构成三角形,求:
(1)△PQR的面积S1的表达式,并求出S1的取值范围;
(2)△PQR的外接圆C2的面积S2的表达式,并求出S2的取值范围.

分析 (1)由题意,tanα=k,sinα=$\frac{|k|}{\sqrt{{k}^{2}+1}}$,即可求出△PQR的面积S1的表达式,并求出S1的取值范围;
(2)求出△PQR的外接圆C2的圆心坐标,可得△PQR的外接圆C2的半径的平方,即可得到△PQR的外接圆C2的面积S2的表达式,并求出S2的取值范围.

解答 解:(1)由题意,tanα=k,sinα=$\frac{|k|}{\sqrt{{k}^{2}+1}}$,
∴△PQR的面积S1=2×$\frac{1}{2}$×$\frac{|k|}{\sqrt{{k}^{2}+1}}$rm=$\frac{|k|mr}{\sqrt{{k}^{2}+1}}$,
∴0<S1<mr;
(2)PQ的垂直平分线方程为y=-$\frac{1}{k}$x,OR的垂直平分线方程为x=$\frac{m}{2}$,
联立可得△PQR的外接圆C2的圆心坐标为($\frac{m}{2}$,-$\frac{m}{2k}$),
∴△PQR的外接圆C2的半径的平方=$\frac{{m}^{2}}{4}+\frac{{m}^{2}}{4{k}^{2}}$,
∴S2=π•($\frac{{m}^{2}}{4}+\frac{{m}^{2}}{4{k}^{2}}$)=$\frac{{m}^{2}π}{4}$(1+$\frac{1}{{k}^{2}}$)>$\frac{{m}^{2}π}{4}$.

点评 本题考查直线与圆的位置关系,考查面积的计算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.设数列{an}的前n项和为Sn.已知a1=1,$\frac{{2{S_n}}}{n}$=an+1-$\frac{1}{3}$n2-n-$\frac{2}{3}$,n∈N*
(1)求数列{an}的通项公式;
(2)设数列{bn}满足an-an-1=bna${\;}_{2^n}}$,求数列{bn}的n前项和Tn
(3)是否存在实数λ,使得不等式λa${\;}_{{{({\sqrt{2}})}^n}}}$-$\frac{λ}{{{a_{{{({\sqrt{2}})}^n}}}}}$+a${\;}_{2^n}}$+$\frac{1}{{{a_{2^n}}}}$≥0恒成立,若存在,求出λ的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.如图是用二分法求方程x2-2=0在[-2,2]的近似解的程序框图,要求解的精确度为ε,①处填的内容是f(x1)•f(m)<0,②处填的内容是|x1-x2|<ε.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.为研究冬季昼夜温差大小对某反季节大豆新品种发芽率的影响,某农科所记录了5组昼夜温差与100颗种子发芽数,得到如表资料:
组号12345
温差x(°C)101113128
发芽数y(颗)2325302616
该所确定的研究方案是:先从这五组数据中选取2组,用剩下的3组数据求出线性回归方程,再对被选取的2组数据进行检验.
(1)若选取的是第1组与第5组的两组数据,请根据第2组至第4组的数据,求出y关于x的线性回归方程$\widehaty$=$\widehatb$x+$\widehata$;
(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2颗,则认为得到的线性回归方程是可靠的,试问(1)中所得的线性回归方程是否可靠?
(参考公式:$\widehatb$=$\frac{{\sum_{i=1}^n{({x_i}-\overline x)({y_i}-\overline y)}}}{{\sum_{i=1}^n{{{({x_i}-\overline x)}^2}}}}$=$\frac{{\sum_{i=1}^n{{x_i}{y_i}-n\overline x\overline y}}}{{\sum_{i=1}^n{{x_i}^2-n{{\overline x}^2}}}}$,$\widehata$=$\overline y$-$\widehatb$$\overline x$)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.天气预报说,未来三天每天下雨的概率都是0.6,用1、2、3、4表示不下雨,用5、6、7、8、9、0表示下雨,利用计算机生成下列20组随机数,则未来三天恰有两天下雨的概率大约是0.4.
757 220  582 092 103 000 181 249  414  993
010 732 680  596 761 835 463 521 186  289.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数f(x)=21-|x|的值域是(  )
A.(0,+∞)B.(-∞,2]C.(0,2]D.[$\frac{1}{2}$,2]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.某公司制定了一个激励销售人员的奖励方案:当销售利润不超过8万元时,按销售利润的15%进行奖励;当销售利润超过8万元时,若超出A万元,则超出部分按log5(2A+1)进行奖励.记奖金为y(单位:万元),销售利润为x(单位:万元).
(1)写出奖金y关于销售利润x的关系式;
(2)如果业务员小江获得3.2万元的奖金,那么他的销售利润是多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知直线l1:$\left\{\begin{array}{l}x=t\\ y=\sqrt{3}t\end{array}$(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立直角坐标系,圆C1:ρ2-2$\sqrt{3}$ρcosθ-4ρsinθ+6=0.
(1)求圆C1的直角坐标方程,直线l1的极坐标方程;
(2)设l1与C1的交点为M,N,求△C1MN的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设a∈R,若复数(1+i)(a+i)的虚部为零,则a=-1.

查看答案和解析>>

同步练习册答案