精英家教网 > 高中数学 > 题目详情
已知椭圆C的对称中心为原点O,焦点在x轴上,左右焦点分别为,且||=2,
点(1,)在该椭圆上.
(Ⅰ)求椭圆C的方程;
(Ⅱ)过的直线与椭圆C相交于A,B两点,若AB的面积为,求以为圆心且与直线相切是圆的方程.
(1)(2)

试题分析:解:(Ⅰ)椭圆C的方程为
(Ⅱ)①当直线⊥x轴时,可得A(-1,-),B(-1,),AB的面积为3,不符合题意.
②当直线与x轴不垂直时,设直线的方程为y=k(x+1).代入椭圆方程得:
,显然>0成立,设A,B,则
,可得|AB|=
又圆的半径r=,∴AB的面积=|AB| r==,化简得:17+-18=0,得k=±1,∴r =,圆的方程为
点评:主要是考查了直线与椭圆的位置关系的运用,通过联立方程组,结合韦达定理来求解三角形的面积,属于基础题。
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知椭圆的左顶点,过右焦点且垂直于长轴的弦长为
(Ⅰ)求椭圆的方程;
(Ⅱ)若过点的直线与椭圆交于点,与轴交于点,过原点与平行的直线与椭圆交于点,求证:为定值.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的中心在坐标原点,焦点在轴上,其左、右焦点分别为,短轴长为,点在椭圆上,且满足的周长为6.
(Ⅰ)求椭圆的方程;;
(Ⅱ)设过点的直线与椭圆相交于A、B两点,试问在x轴上是否存在一个定点M使恒为定值?若存在求出该定值及点M的坐标,若不存在请说明理由.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

已知抛物线和点为抛物线上的点,则满足的点有( )个。
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

的终边经过点A,且点A在抛物线的准线上,则(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

抛物线的焦点为F,点为该抛物线上的动点,又点的最小值是
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的上顶点为,左焦点为,直线与圆相切.过点的直线与椭圆交于两点.
(I)求椭圆的方程;
(II)当的面积达到最大时,求直线的方程.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知椭圆的左焦点F为圆的圆心,且椭圆上的点到点F的距离最小值为
(I)求椭圆方程;
(II)已知经过点F的动直线与椭圆交于不同的两点A、B,点M(),证明:为定值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

在椭圆的焦点为,点p在椭圆上,若,则____   =__    

查看答案和解析>>

同步练习册答案