精英家教网 > 高中数学 > 题目详情
17.直线ax+3y+3=0与直线x+(a-2)y+1=0平行,则a为(  )
A.-1B.3C.3或-1D.$\frac{3}{2}$

分析 由直线的平行关系即可求出.

解答 解:直线ax+3y+3=0与直线x+(a-2)y+1=0平行,
则-$\frac{a}{3}$=-$\frac{1}{a-2}$,
解得a=3或a=-1,
当a=3时,两直线重合,
故a的值为-1,
故选:A.

点评 本题考查直线的一般式方程和平行关系,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.在△ABC中,已知AB=2,BC=1,AC=$\sqrt{3}$,则$\overrightarrow{AB}$•$\overrightarrow{BC}$+$\overrightarrow{BC}$•$\overrightarrow{CA}$+$\overrightarrow{CA}$•$\overrightarrow{AB}$=(  )
A.-4B.-2C.0D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若a>b>0,c<d<0,则下列结论正确的是(  )
A.ac>bdB.ad>bcC.ac<bdD.ad<bc

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若sinα+cosβ=$\frac{\sqrt{3}}{2}$,cosα+sinβ=$\sqrt{2}$,则sin(α-β)=(  )
A.$\frac{5}{11}$B.-$\frac{5}{4}$C.-$\frac{5}{11}$D.$\frac{5}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的离心率e=$\frac{\sqrt{3}}{2}$,焦距为2$\sqrt{3}$.
(Ⅰ) 求椭圆C的方程;
(Ⅱ) 过椭圆C的左顶点B且互相垂直的两直线l1,l2分别交椭圆C于点M,N(点M,N均异于点B),试问直线MN是否过定点,若过定点?求出定点的坐标;若不过定点,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在△ABC中,a=x,b=1,B=30°,若此三角形只有一解,则x的取值范围是(  )
A.2B.0<x≤1C.2或0<x≤1D.1≤x≤2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.三棱锥S-ABC中,已知△ABC是以角A为直角的等腰三角形,AB=2,SB=SC=$\sqrt{3}$,SO⊥BC,垂足为O.
(1)证明:SA⊥BC;
(2)若侧面SBC⊥底面ABC,求OS与平面ASB所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图,已知三棱柱ABC-A1B1C1的侧棱与底面垂直,AA1=AB=AC=1,AB⊥AC,M、N分别是CC1、BC的中点,点P在直线A1B1上,且满足$\overrightarrow{{A}_{1}P}$=λ$\overrightarrow{{A}_{1}{B}_{1}}$(λ∈R).
(1)求异面直线PN,AM所成的角;
(2)若平面PMN与平面ABC所成的角为45°,试确定点P的位置.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.2,4,4,6,6,6,8,8,8,8这10个数的标准差为2.

查看答案和解析>>

同步练习册答案