精英家教网 > 高中数学 > 题目详情
17.如图是某市2014年11月份30天的空气污染指数的频率分布直方图.根据国家标准,污染指数在区间[0,51)内,空气质量为优;在区间[51,101)内,空气质量为良;在区间[101,151)内,空气质量为轻微污染;…,由此可知该市11月份空气质量为优或良的天数有28天.

分析 根据频率和为1,利用频率=$\frac{频数}{样本容量}$,求出对应的频率与频数即可.

解答 解:根据频率分布直方图,得;
该市11月份空气污染指数在100内的频率为
1-$\frac{2}{300}$×10=$\frac{14}{15}$,
∴该市11份空气质量为优或良的天数有:
30×$\frac{14}{15}$=28.
故答案为:28.

点评 本题考查了频率分布直方图的应用问题,也考查了频率、频数与样本容量的应用问题,是基础题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.已知f(x)为定义在[0,2)上的函数,f(x)=$\left\{\begin{array}{l}{cosπx,x∈[0,\frac{1}{2}]}\\{\frac{1}{2}tan(πx+\frac{π}{2}),x∈(\frac{1}{2},1)}\\{f(x-1),x∈[1,2)}\end{array}\right.$,则不等式f(2x-1)≤$\frac{1}{2}$的解集为(  )
A.[$\frac{1}{3},\frac{3}{4}$]∪[$\frac{4}{3},\frac{7}{4}$]B.[$\frac{2}{3},\frac{3}{4}$]∪[1,$\frac{7}{4}$]C.[$\frac{2}{3},\frac{7}{8}$]∪[$\frac{7}{6},\frac{11}{8}$]D.[$\frac{4}{3},\frac{7}{4}$]∪[$\frac{7}{3},\frac{11}{4}$]

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知f(n)=${∫}_{0}^{\frac{π}{n}}$sin(nx)dx,若对于?∈R,f(1)+f(2)+…+f(n)<|x+3|+|x-1|恒成立,则正整数n的最大值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知方程:x3-12x+1-a=0在[1,3]上有解,则实数a的取值范围是[-15,-8].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知实数a和b(b≠0),若不等式|a+2b|+|a-2b|≤M•|b|有解,记实数M的最小值为m.
(1)求m的值;
(2)解不等式|x-1|+|x-3|≤m.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.f(x)=sin(ωx+$\frac{π}{6}$)(0<ω<2),若f($\frac{2π}{3}$)=1,则函数f(x)的最小正周期为4π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.设正项数列{an}的前n项和为Sn,且Sn=$\frac{1}{2}$${a}_{n}^{2}$+$\frac{1}{2}$an,n∈N*.正项等比数列{bn}满足:b2=a2,b4=a6
(1)求数列{an},{bn}的通项公式;
(2)设cn=$\left\{\begin{array}{l}{{a}_{n},n=2k-1}\\{{b}_{n},n=2k(k∈{N}^{*})}\end{array}\right.$,数列{cn}的前n项和为Tn,求所有正整数m的值,使得$\frac{{T}_{2n}}{{T}_{2n-1}}$恰好为数列{cn}中的项.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知x,y满足约束条件$\left\{\begin{array}{l}{y≤x}\\{x+y≤1}\\{y≥-1}\end{array}\right.$,则z=2x-y的最小值是-1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.计算Cn1+2•Cn22+…+n•Cnn2n-1=n(1+2)n-1,可以采用以下方法:
构造恒等式Cn0+Cn12x+Cn222x2+…+Cnn2nxn=(1+2x)n
两边对x求导,得Cn12+2•Cn222x+…+n•Cnn2nxn-1=2n(1+2x)n-1
在上式中令x=1,得Cn1+2•Cn22+…+n•Cnn2n-1=n(1+2)n-1=n•3n-1
类比上述计算方法,计算Cn12+22Cn222+32Cn323+…+n2Cnn2n=2n(2n+1)3n-2

查看答案和解析>>

同步练习册答案