分析 由条件求得ω=$\frac{1}{2}$,f(x)=sin($\frac{1}{2}$x+$\frac{π}{6}$),再根据函数y=Asin(ωx+φ)的周期为 $\frac{π}{ω}$,得出结论.
解答 解:由于f(x)=sin(ωx+$\frac{π}{6}$)(0<ω<2),f($\frac{2π}{3}$)=sin($\frac{2π}{3}ω$+$\frac{π}{6}$)=1,
∴$\frac{2π}{3}ω$+$\frac{π}{6}$=2kπ+$\frac{π}{2}$ k∈z,即ω=3k+$\frac{1}{2}$,∴ω=$\frac{1}{2}$,f(x)=sin($\frac{1}{2}$x+$\frac{π}{6}$),
故函数f(x)的最小正周期为 $\frac{2π}{\frac{1}{2}}$=4π,
故答案为:4π.
点评 本题主要考查根据三角函数的值求角,函数y=Asin(ωx+φ)的周期性,利用了函数y=Asin(ωx+φ)的周期为 $\frac{π}{ω}$,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | 2 | C. | 1 | D. | $\frac{1}{2}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com