分析 作出不等式组对应的平面区域,利用目标函数的几何意义,求目标函数z=2x-y的最小值.
解答 解:由z=2x-y,得y=2x-z,作出不等式对应的可行域(阴影部分),
平移直线y=2x-z,由平移可知当直线y=2x-z,
经过点B时,直线y=2x-z的截距最大,此时z取得最小值,
由$\left\{\begin{array}{l}{y=x}\\{y=-1}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=-1}\\{y=-1}\end{array}\right.$,即B(-1,-1).![]()
将B(-1,-1)的坐标代入z=2x-y,得z=-2-(-1)=-1,
即目标函数z=2x-y的最小值为-1.
故答案为:-1
点评 本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -2 | B. | -1 | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com