精英家教网 > 高中数学 > 题目详情
15.若a>b>0,且ab=1,则下列不等式成立的是(  )
A.a+$\frac{1}{b}$<$\frac{b}{{2}^{a}}$<log2(a+b))B.$\frac{b}{{2}^{a}}$<log2(a+b)<a+$\frac{1}{b}$
C.a+$\frac{1}{b}$<log2(a+b)<$\frac{b}{{2}^{a}}$D.log2(a+b))<a+$\frac{1}{b}$<$\frac{b}{{2}^{a}}$

分析 a>b>0,且ab=1,可取a=2,b=$\frac{1}{2}$.代入计算即可得出大小关系.

解答 解:∵a>b>0,且ab=1,
∴可取a=2,b=$\frac{1}{2}$.
则$a+\frac{1}{b}$=4,$\frac{b}{{2}^{a}}$=$\frac{\frac{1}{2}}{{2}^{2}}$=$\frac{1}{8}$,log2(a+b)=$lo{g}_{2}(2+\frac{1}{2})$=$lo{g}_{2}\frac{5}{2}$∈(1,2),
∴$\frac{b}{{2}^{a}}$<log2(a+b)<a+$\frac{1}{b}$.
故选:B.

点评 本题考查了函数的单调性、不等式的解法与性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.设{an}和{bn}是两个等差数列,记cn=max{b1-a1n,b2-a2n,…,bn-ann}(n=1,2,3,…),其中max{x1,x2,…,xs}表示x1,x2,…,xs这s个数中最大的数.
(1)若an=n,bn=2n-1,求c1,c2,c3的值,并证明{cn}是等差数列;
(2)证明:或者对任意正数M,存在正整数m,当n≥m时,$\frac{{c}_{n}}{n}$>M;或者存在正整数m,使得cm,cm+1,cm+2,…是等差数列.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知圆C过点(1,0),(0,$\sqrt{3}$),(-3,0),则圆C的方程为x2+y2+2x-3=0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是(  )
A.440B.330C.220D.110

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知a∈R,i是虚数单位,若z=a+$\sqrt{3}$i,z•$\overline{z}$=4,则a=(  )
A.1或-1B.$\sqrt{7}$或-$\sqrt{7}$C.-$\sqrt{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知$\overrightarrow{{e}_{1}}$,$\overrightarrow{{e}_{2}}$ 是互相垂直的单位向量,若$\sqrt{3}$$\overrightarrow{{e}_{1}}$-$\overrightarrow{{e}_{2}}$  与$\overrightarrow{{e}_{1}}$+λ$\overrightarrow{{e}_{2}}$的夹角为60°,则实数λ的值是$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在平面直角坐标系xOy中,椭圆E:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,焦距为2.
(Ⅰ)求椭圆E的方程.
(Ⅱ)如图,动直线l:y=k1x-$\frac{\sqrt{3}}{2}$交椭圆E于A,B两点,C是椭圆E上的一点,直线OC的斜率为k2,且k1k2=$\frac{\sqrt{2}}{4}$,M是线段OC延长线上一点,且|MC|:|AB|=2:3,⊙M的半径为|MC|,OS,OT是⊙M的两条切线,切点分别为S,T,求∠SOT的最大值,并求取得最大值时直线l的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.从甲地到乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为$\frac{1}{2}$,$\frac{1}{3}$,$\frac{1}{4}$.
(Ⅰ)设X表示一辆车从甲地到乙地遇到红灯的个数,求随机变量X的分布列和数学期望;
(Ⅱ)若有2辆车独立地从甲地到乙地,求这2辆车共遇到1个红灯的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.线段AB长为60cm,现从该线段随机取两点,则两点距离小于15cm的概率为$\frac{7}{16}$.

查看答案和解析>>

同步练习册答案