精英家教网 > 高中数学 > 题目详情
3.几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是(  )
A.440B.330C.220D.110

分析 方法一:由数列的性质,求得数列{bn}的通项公式及前n项和,可知当N为$\frac{n(n+1)}{2}$时(n∈N+),数列{an}的前N项和为数列{bn}的前n项和,即为2n+1-n-2,容易得到N>100时,n≥14,分别判断,即可求得该款软件的激活码;
方法二:由题意求得数列的每一项,及前n项和Sn=2n+1-2-n,及项数,由题意可知:2n+1为2的整数幂.只需将-2-n消去即可,分别即可求得N的值.

解答 解:设该数列为{an},设bn=${a}_{\frac{(n-1)n}{2}+1}$+…+${a}_{\frac{n(n+1)}{2}}$=2n+1-1,(n∈N+),则$\sum_{i=1}^{n}{b}_{i}$=$\sum_{i=1}^{\frac{n(n+1)}{2}}$ai
由题意可设数列{an}的前N项和为SN,数列{bn}的前n项和为Tn,则Tn=21-1+22-1+…+2n+1-1=2n+1-n-2,
可知当N为$\frac{n(n+1)}{2}$时(n∈N+),数列{an}的前N项和为数列{bn}的前n项和,即为2n+1-n-2,
容易得到N>100时,n≥14,
A项,由$\frac{29×30}{2}$=435,440=435+5,可知S440=T29+b5=230-29-2+25-1=230,故A项符合题意.
B项,仿上可知$\frac{25×26}{2}$=325,可知S330=T25+b5=226-25-2+25-1=226+4,显然不为2的整数幂,故B项不符合题意.
C项,仿上可知$\frac{20×21}{2}$=210,可知S220=T20+b10=221-20-2+210-1=221+210-23,显然不为2的整数幂,故C项不符合题意.
D项,仿上可知$\frac{14×15}{2}$=105,可知S110=T14+b5=215-14-2+25-1=215+15,显然不为2的整数幂,故D项不符合题意.
故选A.
方法二:由题意可知:$\underset{\underbrace{{2}^{0}}}{第一项}$,$\frac{{2}^{0},{2}^{1}}{第二项}$,$\frac{{2}^{0},{2}^{1},{2}^{2}}{第三项}$,…$\frac{{2}^{0},{2}^{1},{2}^{2},…,{2}^{n-1}}{第n项}$,
根据等比数列前n项和公式,求得每项和分别为:21-1,22-1,23-1,…,2n-1,
每项含有的项数为:1,2,3,…,n,
总共的项数为N=1+2+3+…+n=$\frac{(1+n)n}{2}$,
所有项数的和为Sn:21-1+22-1+23-1+…+2n-1=(21+22+23+…+2n)-n=$\frac{2(1-{2}^{n})}{1-2}$-n=2n+1-2-n,
由题意可知:2n+1为2的整数幂.只需将-2-n消去即可,
则①1+2+(-2-n)=0,解得:n=1,总共有$\frac{(1+1)×1}{2}$+2=3,不满足N>100,
②1+2+4+(-2-n)=0,解得:n=5,总共有$\frac{(1+5)×5}{2}$+3=18,不满足N>100,
③1+2+4+8+(-2-n)=0,解得:n=13,总共有$\frac{(1+13)×13}{2}$+4=95,不满足N>100,
④1+2+4+8+16+(-2-n)=0,解得:n=29,总共有$\frac{(1+29)×29}{2}$+5=440,满足N>100,
∴该款软件的激活码440.
故选A.

点评 本题考查数列的应用,等差数列与等比数列的前n项和,考查计算能力,属于难题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

9.如图四面体ABCD中,△ABC是正三角形,AD=CD.
(1)证明:AC⊥BD;
(2)已知△ACD是直角三角形,AB=BD,若E为棱BD上与D不重合的点,且AE⊥EC,求四面体ABCE与四面体ACDE的体积比.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.若存在实数m,n(m<n)使得函数y=ax(a>1)的定义域与值域均为[m,n],则实数a的取值范围为1<a<${e}^{\frac{1}{e}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.如图,已知正四面体D-ABC(所有棱长均相等的三棱锥),P、Q、R分别为AB、BC、CA上的点,AP=PB,$\frac{BQ}{QC}$=$\frac{CR}{RA}$=2,分别记二面角D-PR-Q,D-PQ-R,D-QR-P的平面角为α、β、γ,则(  )
A.γ<α<βB.α<γ<βC.α<β<γD.β<γ<α

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.如图,在圆柱O1O2内有一个球O,该球与圆柱的上、下底面及母线均相切,记圆柱O1O2的体积为V1,球O的体积为V2,则$\frac{{V}_{1}}{{V}_{2}}$的值是$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.海水养殖场进行某水产品的新、旧网箱养殖方法的产量对比,收获时各随机抽取了100个网箱,测量各箱水产品的产量(单位:kg),其频率分布直方图如图:

(1)设两种养殖方法的箱产量相互独立,记A表示事件“旧养殖法的箱产量低于50kg,新养殖法的箱产量不低于50kg”,估计A的概率;
(2)填写下面列联表,并根据列联表判断是否有99%的把握认为箱产量与养殖方法有关:
 箱产量<50kg                  箱产量≥50kg
旧养殖法           
新养殖法             
(3)根据箱产量的频率分布直方图,求新养殖法箱产量的中位数的估计值(精确到0.01).
附:
P(K2≥k)   0.0500.010           0.001            
k3.841      6.635     10.828    
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若a>b>0,且ab=1,则下列不等式成立的是(  )
A.a+$\frac{1}{b}$<$\frac{b}{{2}^{a}}$<log2(a+b))B.$\frac{b}{{2}^{a}}$<log2(a+b)<a+$\frac{1}{b}$
C.a+$\frac{1}{b}$<log2(a+b)<$\frac{b}{{2}^{a}}$D.log2(a+b))<a+$\frac{1}{b}$<$\frac{b}{{2}^{a}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.设θ∈R,则“|θ-$\frac{π}{12}$|<$\frac{π}{12}$”是“sinθ<$\frac{1}{2}$”的(  )
A.充分而不必要条件B.必要而不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.在等差数列{an}中,已知a1=12,S11=187,则a11=22.

查看答案和解析>>

同步练习册答案