| A. | γ<α<β | B. | α<γ<β | C. | α<β<γ | D. | β<γ<α |
分析 解法一:如图所示,建立空间直角坐标系.设底面△ABC的中心为O.不妨设OP=3.则O(0,0,0),P(0,-3,0),C(0,-6,0),D(0,0,6$\sqrt{2}$),Q$(\sqrt{3},2,0)$,R$(-2\sqrt{3},0,0)$,利用法向量的夹角公式即可得出二面角.
解法二:如图所示,连接OP,OQ,OR,过点O分别作垂线:OE⊥PR,OF⊥PQ,OG⊥QR,垂足分别为E,F,G,连接DE,DF,DG..可得tanα=$\frac{OD}{OE}$.tanβ=$\frac{OD}{OF}$,tanγ=$\frac{OD}{OG}$.由已知可得:OE>OG>OF.即可得出.
解答 解法一:如图所示,
建立空间直角坐标系.设底面△ABC的中心为O.
不妨设OP=3.则O(0,0,0),P(0,-3,0),C(0,-6,0),D(0,0,6$\sqrt{2}$),
Q$(\sqrt{3},2,0)$,R$(-2\sqrt{3},0,0)$,
$\overrightarrow{PR}$=$(-2\sqrt{3},3,0)$,$\overrightarrow{PD}$=(0,3,6$\sqrt{2}$),$\overrightarrow{PQ}$=($\sqrt{3}$,5,0),$\overrightarrow{QR}$=$(-3\sqrt{3},-2,0)$,
$\overrightarrow{QD}$=$(-\sqrt{3},-2,6\sqrt{2})$.
设平面PDR的法向量为$\overrightarrow{n}$=(x,y,z),则$\left\{\begin{array}{l}{\overrightarrow{n}•\overrightarrow{PR}=0}\\{\overrightarrow{n}•\overrightarrow{PD}=0}\end{array}\right.$,可得$\left\{\begin{array}{l}{-2\sqrt{3}x+3y=0}\\{3y+6\sqrt{2}z=0}\end{array}\right.$,
可得$\overrightarrow{n}$=$(\sqrt{6},2\sqrt{2},-1)$,取平面ABC的法向量$\overrightarrow{m}$=(0,0,1).
则cos$<\overrightarrow{m},\overrightarrow{n}>$=$\frac{\overrightarrow{m}•\overrightarrow{n}}{|\overrightarrow{m}||\overrightarrow{n}|}$=$\frac{-1}{\sqrt{15}}$,取α=arccos$\frac{1}{\sqrt{15}}$.
同理可得:β=arccos$\frac{3}{\sqrt{681}}$.γ=arccos$\frac{\sqrt{2}}{\sqrt{95}}$.
∵$\frac{1}{\sqrt{15}}$>$\frac{\sqrt{2}}{\sqrt{95}}$>$\frac{3}{\sqrt{681}}$.
∴α<γ<β.![]()
解法二:如图所示,连接OP,OQ,OR,过点O分别作垂线:OE⊥PR,OF⊥PQ,OG⊥QR,垂足分别为E,F,G,连接DE,DF,DG.
设OD=h.![]()
则tanα=$\frac{OD}{OE}$.
同理可得:tanβ=$\frac{OD}{OF}$,tanγ=$\frac{OD}{OG}$.
由已知可得:OE>OG>OF.
∴tanα<tanγ<tanβ,α,β,γ为锐角.
∴α<γ<β.
故选:B.
点评 本题考查了空间角、空间位置关系、正四面体的性质、法向量的夹角公式,考查了推理能力与计算能力,属于难题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 随机变量ξ,η满足η=2ξ+3,则其方差的关系为D(η)=4D(ξ) | |
| B. | 回归分析中,R2的值越大,说明残差平方和越小 | |
| C. | 画残差图时,纵坐标一定为残差,横坐标一定为编号 | |
| D. | 回归直线一定过样本点中心 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 440 | B. | 330 | C. | 220 | D. | 110 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com