精英家教网 > 高中数学 > 题目详情
10.已知a∈R,i是虚数单位,若z=a+$\sqrt{3}$i,z•$\overline{z}$=4,则a=(  )
A.1或-1B.$\sqrt{7}$或-$\sqrt{7}$C.-$\sqrt{3}$D.$\sqrt{3}$

分析 求得z的共轭复数,根据复数的运算,即可求得a的值.

解答 解:由z=a+$\sqrt{3}$i,则z的共轭复数$\overline{z}$=a-$\sqrt{3}$i,
由z•$\overline{z}$=(a+$\sqrt{3}$i)(a-$\sqrt{3}$i)=a2+3=4,则a2=1,解得:a=±1,
∴a的值为1或-1,
故选A.

点评 本题考查共轭复数的求法,复数的乘法运算,考查计算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.三名工人加工同一种零件,他们在一天中的工作情况如图所示,其中Ai的横、纵坐标分别为第i名工人上午的工作时间和加工的零件数,点Bi的横、纵坐标分别为第i名工人下午的工作时间和加工的零件数,i=1,2,3.
(1)记Qi为第i名工人在这一天中加工的零件总数,则Q1,Q2,Q3中最大的是Q1
(2)记pi为第i名工人在这一天中平均每小时加工的零件数,则p1,p2,p3中最大的是p2

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.在正方体ABCD-A1B1C1D1中,给出下列结论:
(1)AC⊥B1D1           
(2)AC1⊥BC1
(3)AB1与BC1成角为60°
  (4)AB与A1C成角为45°
所有正确结论的序号(1)、(3).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.如图,在圆柱O1O2内有一个球O,该球与圆柱的上、下底面及母线均相切,记圆柱O1O2的体积为V1,球O的体积为V2,则$\frac{{V}_{1}}{{V}_{2}}$的值是$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.设函数f(x)=(1-x2)ex
(1)讨论f(x)的单调性;
(2)当x≥0时,f(x)≤ax+1,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若a>b>0,且ab=1,则下列不等式成立的是(  )
A.a+$\frac{1}{b}$<$\frac{b}{{2}^{a}}$<log2(a+b))B.$\frac{b}{{2}^{a}}$<log2(a+b)<a+$\frac{1}{b}$
C.a+$\frac{1}{b}$<log2(a+b)<$\frac{b}{{2}^{a}}$D.log2(a+b))<a+$\frac{1}{b}$<$\frac{b}{{2}^{a}}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设函数f(x)=sin(ωx-$\frac{π}{6}$)+sin(ωx-$\frac{π}{2}$),其中0<ω<3,已知f($\frac{π}{6}$)=0.
(Ⅰ)求ω;
(Ⅱ)将函数y=f(x)的图象上各点的横坐标伸长为原来的2倍(纵坐标不变),再将得到的图象向左平移$\frac{π}{4}$个单位,得到函数y=g(x)的图象,求g(x)在[-$\frac{π}{4}$,$\frac{3π}{4}$]上的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在极坐标系中,直线4ρcos(θ-$\frac{π}{6}$)+1=0与圆ρ=2sinθ的公共点的个数为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.设复数z=cosθ-sinθ+$\sqrt{2}$+i(cosθ+sinθ),当θ为何值时,|z|取得最大值,并求此最大值.

查看答案和解析>>

同步练习册答案