精英家教网 > 高中数学 > 题目详情
19.在极坐标系中,直线4ρcos(θ-$\frac{π}{6}$)+1=0与圆ρ=2sinθ的公共点的个数为2.

分析 把极坐标方程化为直角坐标方程,求出圆心到直线的距离d,与半径比较即可得出位置关系.

解答 解:直线4ρcos(θ-$\frac{π}{6}$)+1=0展开为:4ρ$(\frac{\sqrt{3}}{2}cosθ+\frac{1}{2}sinθ)$+1=0,化为:2$\sqrt{3}$x+2y+1=0.
圆ρ=2sinθ即ρ2=2ρsinθ,化为直角坐标方程:x2+y2=2y,配方为:x2+(y-1)2=1.
∴圆心C(0,1)到直线的距离d=$\frac{3}{\sqrt{(2\sqrt{3})^{2}+{2}^{2}}}$=$\frac{3}{4}$<1=R.
∴直线4ρcos(θ-$\frac{π}{6}$)+1=0与圆ρ=2sinθ的公共点的个数为2.
故答案为:2.

点评 本题考查了极坐标方程化为直角坐标方程、直线与圆的位置关系、点到直线的距离公式,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.已知椭圆x2+my2=1的焦距为$\sqrt{3}$,则m=4或$\frac{4}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知a∈R,i是虚数单位,若z=a+$\sqrt{3}$i,z•$\overline{z}$=4,则a=(  )
A.1或-1B.$\sqrt{7}$或-$\sqrt{7}$C.-$\sqrt{3}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.在平面直角坐标系xOy中,椭圆E:$\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{\sqrt{2}}{2}$,焦距为2.
(Ⅰ)求椭圆E的方程.
(Ⅱ)如图,动直线l:y=k1x-$\frac{\sqrt{3}}{2}$交椭圆E于A,B两点,C是椭圆E上的一点,直线OC的斜率为k2,且k1k2=$\frac{\sqrt{2}}{4}$,M是线段OC延长线上一点,且|MC|:|AB|=2:3,⊙M的半径为|MC|,OS,OT是⊙M的两条切线,切点分别为S,T,求∠SOT的最大值,并求取得最大值时直线l的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知奇函数f(x)在R上是增函数,g(x)=xf(x).若a=g(-log25.1),b=g(20.8),c=g(3),则a,b,c的大小关系为(  )
A.a<b<cB.c<b<aC.b<a<cD.b<c<a

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.从甲地到乙地要经过3个十字路口,设各路口信号灯工作相互独立,且在各路口遇到红灯的概率分别为$\frac{1}{2}$,$\frac{1}{3}$,$\frac{1}{4}$.
(Ⅰ)设X表示一辆车从甲地到乙地遇到红灯的个数,求随机变量X的分布列和数学期望;
(Ⅱ)若有2辆车独立地从甲地到乙地,求这2辆车共遇到1个红灯的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫.从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为(  )
A.$\frac{4}{5}$B.$\frac{3}{5}$C.$\frac{2}{5}$D.$\frac{1}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知函数f(x)=$\sqrt{x+3}$+$\frac{1}{x+2}$.
(1)求f(-3),f($\frac{2}{3}$),f(f(-3))的值;
(2)当a>0时,求f(a),f(a-1)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.定义在R上的函数f(x)满足f(x+3)=f(x).当-3<x≤0时,f(x)=x.则f(1)+f(2)+f(3)+…+f(100)=-101.

查看答案和解析>>

同步练习册答案