分析 (Ⅰ)由题意得关于a,b,c的方程组,求解方程组得a,b的值,则椭圆方程可求;
(Ⅱ)设A(x1,y1),B(x2,y2),联立直线方程与椭圆方程,利用根与系数的关系求得A,B的横坐标的和与积,由弦长公式求得|AB|,由题意可知圆M的半径r,则r=$\frac{2}{3}|AB|=\frac{2\sqrt{2}}{3}\frac{\sqrt{1+{{k}_{1}}^{2}}\sqrt{1+8{{k}_{1}}^{2}}}{1+2{{k}_{1}}^{2}}$.由题意设知${k}_{2}=\frac{\sqrt{2}}{4{k}_{1}}$.得到直线OC的方程,与椭圆方程联立,求得C点坐标,可得|OC|,由题意可知,sin$\frac{∠SOT}{2}$=$\frac{r}{r+|OC|}=\frac{1}{1+\frac{|OC|}{r}}$.转化为关于k1的函数,换元后利用配方法求得∠SOT的最大值为$\frac{π}{3}$,取得最大值时直线l的斜率为${k}_{1}=±\frac{\sqrt{2}}{2}$.
解答
解:(Ⅰ)由题意知,$\left\{\begin{array}{l}{\frac{c}{a}=\frac{\sqrt{2}}{2}}\\{2c=2}\\{{a}^{2}={b}^{2}+{c}^{2}}\end{array}\right.$,解得a=$\sqrt{2}$,b=1.
∴椭圆E的方程为$\frac{{x}^{2}}{2}+{y}^{2}=1$;
(Ⅱ)设A(x1,y1),B(x2,y2),
联立$\left\{\begin{array}{l}{\frac{{x}^{2}}{2}+{y}^{2}=1}\\{y={k}_{1}x-\frac{\sqrt{3}}{2}}\end{array}\right.$,得$(4{{k}_{1}}^{2}+2){x}^{2}-4\sqrt{3}{k}_{1}x-1=0$.
由题意得△=$64{{k}_{1}}^{2}+8$>0.
${x}_{1}+{x}_{2}=\frac{2\sqrt{3}{k}_{1}}{2{{k}_{1}}^{2}+1}$,${x}_{1}{x}_{2}=-\frac{1}{2(2{{k}_{1}}^{2}+1)}$.
∴|AB|=$\sqrt{1+{{k}_{1}}^{2}}|{x}_{1}-{x}_{2}|=\sqrt{2}•\frac{\sqrt{1+{{k}_{1}}^{2}}\sqrt{1+8{{k}_{1}}^{2}}}{1+2{{k}_{1}}^{2}}$.
由题意可知圆M的半径r为
r=$\frac{2}{3}|AB|=\frac{2\sqrt{2}}{3}\frac{\sqrt{1+{{k}_{1}}^{2}}\sqrt{1+8{{k}_{1}}^{2}}}{1+2{{k}_{1}}^{2}}$.
由题意设知,${k}_{1}{k}_{2}=\frac{\sqrt{2}}{4}$,∴${k}_{2}=\frac{\sqrt{2}}{4{k}_{1}}$.
因此直线OC的方程为$y=\frac{\sqrt{2}}{4{k}_{1}}x$.
联立$\left\{\begin{array}{l}{\frac{{x}^{2}}{2}+{y}^{2}=1}\\{y=\frac{\sqrt{2}}{4{k}_{1}}x}\end{array}\right.$,得${x}^{2}=\frac{8{{k}_{1}}^{2}}{1+4{{k}_{1}}^{2}},{y}^{2}=\frac{1}{1+4{{k}_{1}}^{2}}$.
因此,|OC|=$\sqrt{{x}^{2}+{y}^{2}}=\sqrt{\frac{1+8{{k}_{1}}^{2}}{1+4{{k}_{1}}^{2}}}$.
由题意可知,sin$\frac{∠SOT}{2}$=$\frac{r}{r+|OC|}=\frac{1}{1+\frac{|OC|}{r}}$.
而$\frac{|OC|}{r}=\frac{\sqrt{\frac{1+8{{k}_{1}}^{2}}{1+4{{k}_{1}}^{2}}}}{\frac{2\sqrt{2}}{3}\frac{\sqrt{1+{{k}_{1}}^{2}}\sqrt{1+8{{k}_{1}}^{2}}}{1+2{{k}_{1}}^{2}}}$=$\frac{3\sqrt{2}}{4}\frac{1+2{{k}_{1}}^{2}}{\sqrt{1+4{{k}_{1}}^{2}}\sqrt{1+{{k}_{1}}^{2}}}$.
令t=$1+2{{k}_{1}}^{2}$,则t>1,$\frac{1}{t}$∈(0,1),
因此,$\frac{|OC|}{r}=\frac{3}{2}\frac{t}{\sqrt{2{t}^{2}+t-1}}=\frac{3}{2}\frac{1}{\sqrt{2+\frac{1}{t}-\frac{1}{{t}^{2}}}}$=$\frac{3}{2}\frac{1}{\sqrt{-(\frac{1}{t}-\frac{1}{2})^{2}+\frac{9}{4}}}$≥1.
当且仅当$\frac{1}{t}=\frac{1}{2}$,即t=2时等式成立,此时${k}_{1}=±\frac{\sqrt{2}}{2}$.
∴$sin\frac{∠SOT}{2}≤\frac{1}{2}$,因此$\frac{∠SOT}{2}≤\frac{π}{6}$.
∴∠SOT的最大值为$\frac{π}{3}$.
综上所述:∠SOT的最大值为$\frac{π}{3}$,取得最大值时直线l的斜率为${k}_{1}=±\frac{\sqrt{2}}{2}$.
点评 本题考查直线与圆、圆与椭圆位置关系的应用,训练了利用配方法求函数的最值,考查计算能力,是压轴题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | a+$\frac{1}{b}$<$\frac{b}{{2}^{a}}$<log2(a+b)) | B. | $\frac{b}{{2}^{a}}$<log2(a+b)<a+$\frac{1}{b}$ | ||
| C. | a+$\frac{1}{b}$<log2(a+b)<$\frac{b}{{2}^{a}}$ | D. | log2(a+b))<a+$\frac{1}{b}$<$\frac{b}{{2}^{a}}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 充分而不必要条件 | B. | 必要而不充分条件 | ||
| C. | 充要条件 | D. | 既不充分也不必要条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com