精英家教网 > 高中数学 > 题目详情

(本小题共12分)
已知函数的最小值不小于, 且.
(1)求函数的解析式;
(2)函数的最小值为实数的函数,求函数的解析式.

(1)(1)2分
, (2)    4分
由(1)(2)知  5分
(2)函数图象的对称轴为
时,即时,                  7分
时,                                       8分
时,即时,                   10分
综上

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知二次函数,其导函数为,数列的前项和为均在函数的图像上;.
(Ⅰ)求数列的通项公式;
(Ⅱ)若,求数列的通项公式;
(Ⅲ)已知不等式成立,
求证:

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

若集合
(Ⅰ)若,求集合
(Ⅱ)若,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

某企业生产甲、乙两种产品, 根据市场调查与预测, 甲产品的利润与投资成正比, 其关系如图1, 乙产品的利润与投资的算术平方根成正比, 其关系如图2 (注: 利润与投资的单位: 万元).
(Ⅰ) 分别将甲、乙两种产品的利润表示为投资的函数关系式;
(Ⅱ) 该企业筹集了100万元资金投入生产甲、乙两种产品, 问: 怎样分配这100万元资金, 才能使企业获得最大利润, 其最大利润为多少万元?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)已知函数在定义域上是奇函数,又是减函数。
(Ⅰ)证明:对任意的,有
(Ⅱ)解不等式

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

心理学家发现,学生的接受能力依赖于老师引入概念和描述问题所用的时间,上课开始时,学生的兴趣激增,中间有一段不太长的时间,学生的兴趣保持较理想的状态,随后学生的注意力开始分散,并趋于稳定.分析结果和实验表明,设提出和讲述概念的时间为(单位:分),学生的接受能力为值越大,表示接受能力越强),
  
(1)开讲后多少分钟,学生的接受能力最强?能维持多少时间?
(2)试比较开讲后5分钟、20分钟、35分钟,学生的接受能力的大小;
(3)若一个数学难题,需要56的接受能力以及12分钟时间,老师能否及时在学生一直达到所需接受能力的状态下讲述完这个难题?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

设函数
(1) 若,求的取值范围;
(2) 求的最值,并给出取最值时对应的的值

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本题满分12分)已知函数
(1)若的定义域和值域均是,求实数的值;
(2)若对任意的,总有,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

计算下列各式
(Ⅰ) 
(Ⅱ)

查看答案和解析>>

同步练习册答案