精英家教网 > 高中数学 > 题目详情

(本题满分12分)已知函数在定义域上是奇函数,又是减函数。
(Ⅰ)证明:对任意的,有
(Ⅱ)解不等式

解:(Ⅰ)若,显然不等式成立;
在定义域上是奇函数,又是减函数,故原不等式成立;
同理可证当原不等式也成立。                  ----6分
(Ⅱ)由和已知可得以下不等式组:
                           -----12分

解析

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

已知函数
(1)当,且时,求证: 
(2)是否存在实数,使得函数的定义域、值域都是?若存在,则求出的值,若不存在,请说明理由。

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)(1)计算的值.
(2)计算的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题共12分)
已知函数的最小值不小于, 且.
(1)求函数的解析式;
(2)函数的最小值为实数的函数,求函数的解析式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分12分)
设函数f(x)=x2-2x+2,x∈[t,t+1](t∈R)的最小值为g(t),求g(t)的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知一家公司生产某种品牌服装的年固定成本为10万元,每生产1千件需另投入2.7万元.设该公司一年内共生产该品牌服装x千件并全部销售完,每千件的销售收入为R(x)万元,且R(x)=
(1)写出年利润W(万元)关于年产量x(千件)的函数解析式;
(2)年产量为多少千件时,该公司在这一品牌服装的生产中所获得利润最大?(注:年利润=年销售收入-年总成本)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分13分)
在一个月内分批购入每张价值为20元的书桌共36台,每批都购入x台(x是正整数),且每批均需付运费4元,储存购入的书桌一个月所付的保管费与每批购入书桌的总价值(不含运费)成正比,若每批购入4台,则该月需用去运费和保管费共52元,现在全月只有48元资金可以用于支付运费和保管费.
(1)求该月需用去的运费和保管费的总费用
(2)能否恰当地安排每批进货的数量,使资金够用?写出你的结论,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

(本小题满分14分)
已知函数对一切实数x,y都有成立,且.
(1)求的值
(2)求的解析式
(3)若,对任意的,总存在,使得成立,求实数的取值范围

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

已知函数的定义域为,并满足(1)对于一切实数,都有
(2)对任意的;  (3)
利用以上信息求解下列问题:
(1)求
(2)证明
(3)若对任意的恒成立,求实数的取值范围。

查看答案和解析>>

同步练习册答案