精英家教网 > 高中数学 > 题目详情
5.已知F为双曲线C:2x2-my2=4m(m>0)的一个焦点,则点F到C的一条渐近线的距离为2.

分析 求出双曲线的标准方程,根据焦点在x轴上的双曲线的焦点到渐近线的距离为b进行求解即可.

解答 解:双曲线的标准方程为$\frac{{x}^{2}}{2m}$-$\frac{{y}^{2}}{4}$=1,
双曲线的焦点在x轴,则a2=2m,b2=4,
则b=2,
设焦点在x轴的双曲线的方程为$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{{b}^{2}}$=1,
设焦点F(c,0),双曲线的一条渐近线方程为y=$\frac{b}{a}$x,即bx-ay=0
则点F到C的一条渐近线的距离d=$\frac{bc}{\sqrt{{a}^{2}+{b}^{2}}}=\frac{bc}{c}=b$=2
故答案为:2

点评 本题主要考查双曲线性质的考查,利用焦点在x轴上的双曲线的焦点到渐近线的距离为b进行求解是解决本题的关键.如果直接根据定义进行求解比较麻烦.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.设函数f(x)=ax2+ex(a∈R)有且仅有一个极值点,则实数a的取值范围是(0,+∞)∪{-$\frac{e}{2}$}.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.(1)求证$\sqrt{3}$+$\sqrt{7}$<2$\sqrt{5}$;
(2)如图,已知AB、CD相交于O,△ACO≌△BDO,AE=BF,证明:CE=FD.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.设双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)与幂函数y=$\sqrt{x}$的图象相交于P,且过双曲线C的左焦点F(-1,0)的直线与函数y=$\sqrt{x}$的图象相切于P,则双曲线C的离心率为(  )
A.$\frac{\sqrt{3}+1}{2}$B.$\frac{\sqrt{3}-1}{2}$C.$\frac{\sqrt{5}+1}{2}$D.$\frac{\sqrt{5}-1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.双曲线$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的一条渐近线是3x-4y=0,则该双曲线的离心率为$\frac{5}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.下列说法中,正确的有(  )
①用反证法证明命题“a,b∈R,方程x3+ax+b=0至少有一个实根”时,要作的假设是“方程至多有两个实根”;
②用数学归纳法证明“1+2+22+…+2n+2=2n+3-1,在验证n=1时,左边的式子是1+2+22
③用数学归纳法证明$\frac{1}{n+1}$+$\frac{1}{n+2}$+…+$\frac{1}{n+n}$>$\frac{13}{24}$(n∈N*)的过程中,由n=k推导到n=k+1时,左边增加的项为$\frac{1}{2n+1}$+$\frac{1}{2n+2}$,没有减少的项;
④演绎推理的结论一定正确;
⑤要证明“$\sqrt{7}$-$\sqrt{3}$>$\sqrt{6}$-$\sqrt{2}$”的最合理的方法是分析法.
A.①④B.C.②③⑤D.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知点F是双曲线$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的一个焦点,过点F且斜率为$\frac{{\sqrt{3}}}{3}$的直线l与圆x2+y2=a2相切,则双曲线的离心率为(  )
A.$\frac{{2\sqrt{3}}}{3}$B.$\sqrt{5}$C.2D.3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.函数y=3sin(2x+$\frac{π}{6}$)的单调增区间(  )
A.[kπ-$\frac{π}{12}$,kπ+$\frac{5π}{12}$](k∈Z)B.[kπ+$\frac{5π}{12}$,kπ+$\frac{11π}{12}$](k∈Z)
C.[kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$](k∈Z)D.[kπ+$\frac{π}{6}$,kπ+$\frac{2π}{3}$](k∈Z)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.下列命题中正确的是(  )
A.命题“?x∈R使得x2+x+1<0”的否定是“?x∈R均有x2+x+1<0”
B.若p为真命题,q为假命题,则(¬p)∨q为真命题
C.为了了解高考前高三学生每天的学习时间,现要用系统抽样的方法从某班50个学生中抽取一个容量为10的样本,已知50个学生的编号为1,2,3…50,若8号被选出,则18号也会被选出
D.已知m、n是两条不同直线,α、β是两个不同平面,α∩β=m,则“n?α,n⊥m”是“α⊥β”的充分条件

查看答案和解析>>

同步练习册答案