分析 (1)直接法不易求证,可用分析法进行证明;
(2)利用边角边证明三角形全等即可.
解答 证明:(1))因为$\sqrt{3}$+$\sqrt{7}$<2$\sqrt{5}$都是正数,所以为了证明$\sqrt{3}$+$\sqrt{7}$<2$\sqrt{5}$
只需证明($\sqrt{3}$+$\sqrt{7}$)2<(2$\sqrt{5}$)2,
展开得10+2$\sqrt{21}$<20
即$\sqrt{21}$<5,
因为21<25成立,
所以($\sqrt{3}$+$\sqrt{7}$)2<(2$\sqrt{5}$)2成立
即证明了$\sqrt{3}$+$\sqrt{7}$<2$\sqrt{5}$;
(2)∵△ACO≌△BDO,∴CO=DO,AO=BO
∵AE=BF,∴EO=FO
在△EOC与△FOD中,$\left\{\begin{array}{l}{CO=DO}\\{∠COE=∠DOF}\\{EC=FD}\end{array}\right.$,
∴△EOC≌△FOD,∴EC=FD
点评 本题考查分析法证明不等式,用此方法应保证每步与上一步都互为充要条件;考查三角形全等的证明,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{5}$ | B. | $\frac{27}{13}$ | C. | $\frac{9}{19}$ | D. | $\frac{9}{13}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com